IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i23p16340-d1288814.html
   My bibliography  Save this article

The Mechanical Properties and Failure Mechanisms of Steel-Fiber- and Nano-Silica-Modified Crumb Rubber Concrete Subjected to Elevated Temperatures

Author

Listed:
  • Yihong Wang

    (School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China)

  • Jiawei Chen

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

Steel-fiber- and nano-silica-modified crumb rubber concrete (SFNS-CRC), a new kind of environmentally friendly concrete, is characterized by its high performance. It achieves the recycling and reuse of waste rubber and promotes sustainable development in the rubber industry. This study used 12 groups of 288 specimens to study its mechanical properties and failure mechanisms when subjected to elevated temperatures. In the experiments, a heating and loading apparatus invented in our laboratory was used. The chosen crumb rubber concrete contained 5% rubber by volume. Through specimen analysis, the failure modes, mass loss, and compressive and splitting strengths of the specimens, as well as their failure mechanisms, were tested and are discussed while taking into account three variables, namely steel fiber volume ratio (0%, 0.5%, 1.0%, and 1.5%), nano-silica content (0%, 1%, and 2%), and temperature (20 °C, 200 °C, 400 °C, and 600 °C). The test results indicate that the typical damage shapes of CRC subjected to elevated temperatures can be significantly ameliorated through the addition of steel fibers and nano-silica. This can lead to evident improvements in brittle failure and render CRC ductile. Essentially, it improves the integrity of SFNS-CRC specimens. The compressive and splitting tensile strengths of concrete mixtures subjected to elevated temperatures increase with an increase in the steel fiber content. There is an obvious improvement in the compressive strength when subjected to elevated temperatures and after adding nano-silica. The CRC with a content of 1.0% steel fiber is optimal, and the optimal content of nano-silica is 1.0%. In addition, SFNS-CRC performs better in terms of mechanical properties when subjected to elevated temperatures. The splitting tensile strength of SFNS-CRC is improved using steel fibers, and nano-silica plays a crucial role in improving compressive performance. SEM and XRD analyses helped verify the test results.

Suggested Citation

  • Yihong Wang & Jiawei Chen, 2023. "The Mechanical Properties and Failure Mechanisms of Steel-Fiber- and Nano-Silica-Modified Crumb Rubber Concrete Subjected to Elevated Temperatures," Sustainability, MDPI, vol. 15(23), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16340-:d:1288814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/23/16340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/23/16340/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:23:p:16340-:d:1288814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.