IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14131-d1246695.html
   My bibliography  Save this article

Rheological, Mechanical, and Micro-Structural Property Assessment of Eco-Friendly Concrete Reinforced with Waste Areca Nut Husk Fiber

Author

Listed:
  • Noor Md. Sadiqul Hasan

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Nur Mohammad Nazmus Shaurdho

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Md. Habibur Rahman Sobuz

    (Department of Building Engineering and Construction Management, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh)

  • Md. Montaseer Meraz

    (Department of Building Engineering and Construction Management, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh)

  • Md. Abdul Basit

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Suvash Chandra Paul

    (Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh)

  • Md Jihad Miah

    (Department of Civil and Architectural Engineering, Aarhus University, 8000 Aarhus, Denmark)

Abstract

Fiber-reinforced concrete (FRC) has become one of the most promising construction techniques and repairing materials in recent times for the construction industry. Generally, plain concrete has a very low tensile strength and limited resistance to cracking prior to the ultimate load, which can be mitigated by the incorporation of fiber. Natural fibers have emerged as an appealing sustainable option in the last few decades due to their lower cost, energy savings, and minimized greenhouse effects. Areca fiber is one of the natural fibers that can be sourced from the waste-producing areca nut industry. Hence, this study aims to assess the mechanical, rheological, and micro-structural properties of areca fiber-reinforced concrete (AFRC). For this purpose, areca fiber was used in the concrete mix as a weight percentage of cement. In this regard, 1%, 2%, 3%, and 4% by weight of cement substitutions were investigated. As key findings, 2% areca fiber enhanced the compressive strength of concrete by 2.89% compared to the control specimen (fiber-free concrete). On the other hand, splitting tensile strength increased by 18.16%. In addition, scanning electron microscopy (SEM) images revealed that the cement matrix and fibers are adequately connected at the interfacial level. Energy dispersive X-ray spectroscopy (EDX) test results showed more biodegradable carbon elements in the areca fiber-mixed concrete as well as an effective pozzolanic reaction. The study also exhibited that adding natural areca fiber lowered the fabrication cost by almost 1.5% and eCO 2 emissions by 3%. Overall, the findings of this study suggest that AFRC can be used as a possible building material from the standpoint of sustainable construction purposes.

Suggested Citation

  • Noor Md. Sadiqul Hasan & Nur Mohammad Nazmus Shaurdho & Md. Habibur Rahman Sobuz & Md. Montaseer Meraz & Md. Abdul Basit & Suvash Chandra Paul & Md Jihad Miah, 2023. "Rheological, Mechanical, and Micro-Structural Property Assessment of Eco-Friendly Concrete Reinforced with Waste Areca Nut Husk Fiber," Sustainability, MDPI, vol. 15(19), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14131-:d:1246695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali İhsan Çelik & Yasin Onuralp Özkılıç & Özer Zeybek & Nebi Özdöner & Bassam A. Tayeh, 2022. "Performance Assessment of Fiber-Reinforced Concrete Produced with Waste Lathe Fibers," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    2. Lei Wang & Fanxing Guo & Huamei Yang & Yan Wang & Shengwen Tang, 2021. "Comparison Of Fly Ash, Pva Fiber, Mgo And Shrinkage-Reducing Admixture On The Frost Resistance Of Face Slab Concrete Via Pore Structural And Fractal Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(02), pages 1-18, March.
    3. Memduh Karalar & Yasin Onuralp Özkılıç & Ahmed Farouk Deifalla & Ceyhun Aksoylu & Musa Hakan Arslan & Mahmood Ahmad & Mohanad Muayad Sabri Sabri, 2022. "Improvement in Bending Performance of Reinforced Concrete Beams Produced with Waste Lathe Scraps," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Antonio da Silva Fernandes & Dayriane do Socorro de Oliveira Costa & Camilo Andrés Guerrero Martin & João Adriano Rossignolo, 2023. "Vitreous Foam with Thermal Insulating Property Produced with the Addition of Waste Glass Powder and Rice Husk Ash," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
    2. Memduh Karalar & Yasin Onuralp Özkılıç & Ahmed Farouk Deifalla & Ceyhun Aksoylu & Musa Hakan Arslan & Mahmood Ahmad & Mohanad Muayad Sabri Sabri, 2022. "Improvement in Bending Performance of Reinforced Concrete Beams Produced with Waste Lathe Scraps," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    3. Marija Ivanović & Sanja Knežević & Miljana M. Mirković & Ljiljana Kljajević & Dušan Bučevac & Vladimir B. Pavlović & Miloš Nenadović, 2023. "Structural Characterization of Geopolymers with the Addition of Eggshell Ash," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    4. Maria E. Sosa & Claudio J. Zega, 2023. "Experimental and Estimated Evaluation of Drying Shrinkage of Concrete Made with Fine Recycled Aggregates," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    5. Bangwen Lu & Changwu Liu & Jungang Guo & Naiqi Feng, 2023. "Study on Physical and Mechanical Properties of High-Water Material Made by Seawater," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    6. Guobao Luo & Jian Zhang & Zhenhua Zhao & Mingzhi Sun, 2023. "Fatigue Property Evaluation of Sustainable Porous Concrete Modified by Recycled Ground Tire Rubber/Silica Fume under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    7. Anna Starczyk-Kołbyk & Marcin Małek, 2023. "Analysis of the Life Cycle and Properties of Concrete with the Addition of Waste Car Glass," Sustainability, MDPI, vol. 15(14), pages 1-35, July.
    8. Phermphorn Buathong & Thanakorn Chompoorat & Pornkasem Jongpradist & Xiaobin Chen & Pitthaya Jamsawang, 2023. "Effect of Palm Fiber Reinforcement on the Unconfined Compressive Performance of Cement-Treated Sand," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    9. Abeer M. El-Sayed & Abeer A. Faheim & Aida A. Salman & Hosam M. Saleh, 2022. "Sustainable Lightweight Concrete Made of Cement Kiln Dust and Liquefied Polystyrene Foam Improved with Other Waste Additives," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    10. Muhammad Talha Amir & Sobia Riaz & Hawreen Ahmed & Syed Safdar Raza & Ahmed Ali A. Shohan & Saleh Alsulamy, 2023. "Synergistic Effect of Micro-Silica and Recycled Tyre Steel Fiber on the Properties of High-Performance Recycled Aggregate Concrete," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    11. Shaoyong Han & Dongsong Zheng & Bahareh Mehdizadeh & Emad Abouel Nasr & Mayeen Uddin Khandaker & Mohammad Salman & Peyman Mehrabi, 2023. "Sustainable Design of Self-Consolidating Green Concrete with Partial Replacements for Cement through Neural-Network and Fuzzy Technique," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    12. Ceyhun Aksoylu & Yasin Onuralp Özkılıç & Marijana Hadzima-Nyarko & Ercan Işık & Musa Hakan Arslan, 2022. "Investigation on Improvement in Shear Performance of Reinforced-Concrete Beams Produced with Recycled Steel Wires from Waste Tires," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    13. Jianluan Li & Yonggao Yin & Jing Yan, 2023. "Experimental and Numerical Study on the Mechanical Performance of Ultra-High-Performance Concrete T-Section Beams," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    14. Miloš Kopić & Tiana Milović & Bojan Matić & Stanislav Jovanović & Milan Marinković, 2022. "Optimum Fluid Content in Pavement Cold In-Place Recycling Containing Waste Materials," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14131-:d:1246695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.