IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10381-d1184413.html
   My bibliography  Save this article

The Application of Clinoptilolite as the Green Catalyst in the Solvent-Free Oxidation of α-Pinene with Oxygen

Author

Listed:
  • Jadwiga Grzeszczak

    (Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)

  • Agnieszka Wróblewska

    (Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)

  • Karolina Kiełbasa

    (Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)

  • Zvi C. Koren

    (The Edelstein Center, Department of Chemical Engineering, Shenkar College of Engineering, Design and Art, 12 Anna Frank Street, Ramat Gan 52526, Israel)

  • Beata Michalkiewicz

    (Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland)

Abstract

In this work, we present the catalytic application of the naturally occurring zeolite, clinoptilolite, in the oxidation of α-pinene, a natural terpene compound. Clinoptilolites with different average particle sizes, designated as (in μm) clin_1 (20), clin_2 (50), clin_3 (200), and clin_4 (500–1000), were used as the green catalysts in the solvent-free oxidation of α-pinene with oxygen. Prior to their application in catalytic tests, the catalysts were characterized by the following methods: nitrogen sorption at 77 K, EDXRF, XRD, SEM, UV-Vis, and FTIR. The effects of the temperature, amount of the catalyst, and reaction time on the product’s selectivity and α-pinene conversion were determined. At the optimal conditions (a temperature of 100 °C, catalyst content (clin_4) in the reaction mixture of 0.05 wt%, and 210 min reaction time), the following compounds were obtained as the main products: α-pinene oxide (selectivity 29 mol%), verbenol (selectivity 17 mol%), and verbenone (selectivity 13 mol%). The conversion of α-pinene under these conditions amounted to 35 mol%. Additionally, the kinetic modeling of α-pinene oxidation over the most active catalyst (clin_4) was performed. The proposed method of oxidation is environmentally safe because it does not require the separation of products from the solvent. In addition, this method allows for managing the biomass in the form of turpentine, which is the main source of α-pinene. The catalytic application of clinoptilolite in the oxidation of α-pinene has not yet been reported in the literature.

Suggested Citation

  • Jadwiga Grzeszczak & Agnieszka Wróblewska & Karolina Kiełbasa & Zvi C. Koren & Beata Michalkiewicz, 2023. "The Application of Clinoptilolite as the Green Catalyst in the Solvent-Free Oxidation of α-Pinene with Oxygen," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10381-:d:1184413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magín Lapuerta & Indira Tobío-Pérez & Marianela Ortiz-Alvarez & David Donoso & Laureano Canoira & Ramón Piloto-Rodríguez, 2023. "Heterogeneous Catalytic Conversion of Terpenes into Biofuels: An Open Pathway to Sustainable Fuels," Energies, MDPI, vol. 16(6), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10381-:d:1184413. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.