IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4247-d786216.html
   My bibliography  Save this article

A Framework for Evaluating the Effects of Green Infrastructure in Mitigating Pollutant Transferal and Flood Events in Sunnyside, Houston, TX

Author

Listed:
  • Galen Newman

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

  • Garett T. Sansom

    (School of Public Health, Texas A&M University, College Station, TX 77843, USA)

  • Siyu Yu

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

  • Katie R. Kirsch

    (Department of Environmental and Occupational Health, Texas A&M University, College Station, TX 77843, USA)

  • Dongying Li

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

  • Youjung Kim

    (Department of Geography, Planning and Environment, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Jennifer A. Horney

    (Disaster Research Center, University of Delaware, Newark, DE 19716, USA)

  • Gunwoo Kim

    (Graduate School of Urban Studies, Hanyang University, Seoul 04763, Korea)

  • Saima Musharrat

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA)

Abstract

There is a growing and critical need to develop solutions for communities that are at particular risk of the impacts of the nexus of hazardous substances and natural disasters. In urban areas at high risk for flooding and lacking proper land-use controls, communities are vulnerable to environmental contamination from industrial land uses during flood events. This research uniquely applied a series of landscape pzerformance models to evaluate such associations including (1) the Green Values National Stormwater Calculator, (2) the Value of Green Infrastructure Tool, and (3) the Long-Term Hydrologic Impact Assessment Model. This paper presents a framework for combining landscape performance models, which are often only individually applied, to evaluate green infrastructure impacts on flood mitigation and pollutant transfer during flooding events using the Sunnyside neighborhood in Houston, Texas, USA, as a case site. The results showed that the plan reduced the risk of flooding, decreased stormwater runoff contaminants, and provided a possible direction to protect vulnerable communities.

Suggested Citation

  • Galen Newman & Garett T. Sansom & Siyu Yu & Katie R. Kirsch & Dongying Li & Youjung Kim & Jennifer A. Horney & Gunwoo Kim & Saima Musharrat, 2022. "A Framework for Evaluating the Effects of Green Infrastructure in Mitigating Pollutant Transferal and Flood Events in Sunnyside, Houston, TX," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4247-:d:786216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Whitehouse, 2017. "Common economic oversights in green infrastructure valuation," Landscape Research, Taylor & Francis Journals, vol. 42(2), pages 230-234, February.
    2. Seyed Meysam Khoshnava & Raheleh Rostami & Rosli Mohamad Zin & Dalia Štreimikiene & Alireza Yousefpour & Abbas Mardani & Melfi Alrasheedi, 2020. "Contribution of green infrastructure to the implementation of green economy in the context of sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 320-342, January.
    3. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    4. Philip Berke & Galen Newman & Jaekyung Lee & Tabitha Combs & Carl Kolosna & David Salvesen, 2015. "Evaluation of Networks of Plans and Vulnerability to Hazards and Climate Change: A Resilience Scorecard," Journal of the American Planning Association, Taylor & Francis Journals, vol. 81(4), pages 287-302, October.
    5. Kousky, Carolyn & Walls, Margaret & Chu, Ziyan, 2013. "Flooding and Resilience: Valuing Conservation Investments in a World with Climate Change," RFF Working Paper Series dp-13-38, Resources for the Future.
    6. Manasvini Thiagarajan & Galen Newman & Shannon Van Zandt, 2018. "The Projected Impact of a Neighborhood-Scaled Green-Infrastructure Retrofit," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    7. Gemma Jerome, 2017. "Defining community-scale green infrastructure," Landscape Research, Taylor & Francis Journals, vol. 42(2), pages 223-229, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xifan Chen & Lihua Xu & Rusong Zhu & Qiwei Ma & Yijun Shi & Zhangwei Lu, 2022. "Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority," Land, MDPI, vol. 11(6), pages 1-17, June.
    2. Shlomit Flint Ashery & Carl Steinitz, 2022. "Issue-Based Complexity: Digitally Supported Negotiation in Geodesign Linking Planning and Implementation," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    3. Xiaoyu Li & Jingxi Peng & Dongying Li & Robert D. Brown, 2023. "A Framework for Evidence-Based Landscape Architecture: Cooling a Hot Urban Climate through Design," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    4. Zhenhang Cai & Rui Zhu & Emma Ruggiero & Galen Newman & Jennifer A. Horney, 2023. "Calculating the Environmental Impacts of Low-Impact Development Using Long-Term Hydrologic Impact Assessment: A Review of Model Applications," Land, MDPI, vol. 12(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greg D. Simpson & Jackie Parker, 2018. "Data on Peer-Reviewed Papers about Green Infrastructure, Urban Nature, and City Liveability," Data, MDPI, vol. 3(4), pages 1-10, November.
    2. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    3. Robert, Samuel & Schleyer-Lindenmann, Alexandra, 2021. "How ready are we to cope with climate change? Extent of adaptation to sea level rise and coastal risks in local planning documents of southern France," Land Use Policy, Elsevier, vol. 104(C).
    4. Bin Xue & Bingsheng Liu & Tao Liang & Dong Zhao & Tao Wang & Xingbin Chen, 2022. "A heterogeneous decision criteria system evaluating sustainable infrastructure development: From the lens of multidisciplinary stakeholder engagement," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 556-579, August.
    5. Xinyu Hu & Chun Dong & Yihan Wang, 2023. "Coupled and Coordinated Analysis of Urban Green Development and Ecological Civilization Construction in the Yangtze River Delta Region," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    6. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    7. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.
    8. Domingues, Rita & Costas, Susana & Jesus, Saul & Ferreira, Óscar, 2017. "SENSE OF PLACE, RISK PERCEPTIONS AND PREPAREDNESS OF A COASTAL POPULATION AT RISK (Faro Beach, Portugal): A qualitative content analysis," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(3), pages 163-175.
    9. Zhibin Yang & Robert Stachler & Joshua S. Heyne, 2020. "Orthogonal Reference Surrogate Fuels for Operability Testing," Energies, MDPI, vol. 13(8), pages 1-13, April.
    10. Qingchun Li & Shangjia Dong & Ali Mostafavi, 2019. "Modeling of inter-organizational coordination dynamics in resilience planning of infrastructure systems: A multilayer network simulation framework," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-21, November.
    11. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    12. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    13. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    14. Paul A. Sandifer & Alexander S. Braud & Landon C. Knapp & Judith Taylor, 2021. "Is Living in a U.S. Coastal City Good for One’s Health?," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    15. Rebecca Jo Stormes Newman & Claudia Capitani & Colin Courtney-Mustaphi & Jessica Paula Rose Thorn & Rebecca Kariuki & Charis Enns & Robert Marchant, 2020. "Integrating Insights from Social-Ecological Interactions into Sustainable Land Use Change Scenarios for Small Islands in the Western Indian Ocean," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    16. Martins Fernando L.C. & Giordano Fabio & Barrella Walter, 2021. "Socio-Environmental Vulnerability of Water in the Estuary of the Metropolitan Region of Santos (Brazil)," Quaestiones Geographicae, Sciendo, vol. 40(4), pages 113-125, December.
    17. Avit K. Bhowmik & Rajchandar Padmanaban & Pedro Cabral & Maria M. Romeiras, 2022. "Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    18. Malecha, Matthew L. & Brand, A.D. & Berke, Philip R., 2018. "Spatially evaluating a network of plans and flood vulnerability using a Plan Integration for Resilience Scorecard: A case study in Feijenoord District, Rotterdam, the Netherlands," Land Use Policy, Elsevier, vol. 78(C), pages 147-157.
    19. Sanchayan Nath & Frank van Laerhoven & Peter P. J. Driessen, 2019. "Have Bangladesh’s Polders Decreased Livelihood Vulnerability? A Comparative Case Study," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    20. Leonid Sorokin & Gérard Mondello, 2015. "Sea Level Rise, Radical Uncertainties and Decision-Maker’s Liability: The European Coastal Airports Case," Working Papers hal-01251476, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4247-:d:786216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.