IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p1020-d726586.html
   My bibliography  Save this article

Heavy Metal Concentrations of Soil, Rock, and Coal Gangue in the Geological Profile of a Large Open-Pit Coal Mine in China

Author

Listed:
  • Xiaoyang Liu

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China)

  • Ming Jing

    (China Natural Resources News, Beijing 100860, China)

  • Zhongke Bai

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Land and Resources, Beijing 100035, China)

Abstract

Risk assessment related to heavy metals in mining areas is crucial to ensuring the sustainable development of regional ecosystems and protecting human health. However, almost all research on the impact of mining activities on environmental quality entails field monitoring of surface soils or soil profiles. Here, to compare the variety of heavy metal concentrations in the geological profile, 39 samples (including soil, rock, and coal gangue) were collected and analyzed from hundreds of meters underground in the Pingshuo coal mine (Anjialing coal mine, Antaibao coal mine, and Donglutian coal mine), which is the largest open-pit coal mine in China. The mean heavy metal concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in soils were 0.15 mg/kg, 0.02 mg/kg, 13.70 mg/kg, 27.12 mg/kg, 70.89 mg/kg, 26.10 mg/kg, 79.88 mg/kg, and 37.68 mg/kg, respectively; most of these metals were more concentrated in the soil samples than in the rock and coal gangue samples. A potential ecological risk assessment indicated that As, Pb, Cr, Cu, Zn, and Ni in all samples showed low risk, while the ecological risk degrees of Cd and Hg were higher and contributed most to the total risk index ( RI ). The highest E_r^i value (92.94) for Cd was found in rock samples, contributing to approximately 55.18% of the to tal RI . For Hg, four rock sampling sites had the highest E_r^i values (427.70, 270.78, 198.96, and 188.70), contributing approximately 68.36–88.07% of the total RI . Ranked after soil (0.15 mg/kg), limestone and shale showed high mean Cd concentrations (both 0.13 mg/kg). The highest mean concentration was found in coal gangue samples (0.1 mg/kg). Compared with the other types of samples, the mean concentrations of Cr, Cu, and Ni in soils, limestone, and mudstone were relatively higher. At different sites, heavy metal concentrations varied greatly at different depths, owing to diverse sample types and rock types. Correlations between heavy metals and soil nutrients indicated that N and P were closely correlated with heavy metals. Comparing the proportions of different heavy metals in various types of samples showed that heavy metals in soils were extremely similar to those in limestone, mudstone, and shale, implying that soils might indirectly inherit their features from their parent material.

Suggested Citation

  • Xiaoyang Liu & Ming Jing & Zhongke Bai, 2022. "Heavy Metal Concentrations of Soil, Rock, and Coal Gangue in the Geological Profile of a Large Open-Pit Coal Mine in China," Sustainability, MDPI, vol. 14(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:1020-:d:726586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/1020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/1020/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dongping Deng & Yong Wu & Yi Sun & Bangzheng Ren & Lei Song, 2022. "Pollution Characteristics and Spatial Distribution of Heavy Metals in Coal-Bearing Sandstone Soil: A Case Study of Coal Mine Area in Southwest China," IJERPH, MDPI, vol. 19(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:1020-:d:726586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.