IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15771-d985497.html
   My bibliography  Save this article

Ecological Environment Evaluation Based on Remote Sensing Ecological Index: A Case Study in East China over the Past 20 Years

Author

Listed:
  • Shangxiao Wang

    (Nanjing Center of Geological Survey, China Geological Survey, Nanjing 210016, China)

  • Ming Zhang

    (Nanjing Center of Geological Survey, China Geological Survey, Nanjing 210016, China)

  • Xi Xi

    (Institute of Geology, China Earthquake Administration, Beijing 100029, China)

Abstract

East China is one of the most active regions in terms of economic and social development, and with the accelerated urbanization process, environmental problems are becoming increasingly prominent. The objective, quantitative, and timely evaluation of spatial and temporal changes in ecological quality is of great significance for environmental protection and decision making. The remote sensing ecological index (RSEI) is an objective, fast, and easy ecological quality monitoring and evaluation technique which has been widely used in the field of ecological research, but it often involves problems of cloud occlusion and stitching difficulties when used to conduct large-scale and long-term monitoring. In this paper, based on the Google Earth Engine (GEE) platform, an RSEI was constructed using MODIS data products to evaluate the spatial and temporal changes in ecological quality in East China over the past 20 years. The study shows the following: (1) The mean RSEI values in 2000, 2005, 2010, 2015, and 2020 were 0.67, 0.55, 0.59, 0.58, and 0.63, respectively, with the mean values first decreasing and then showing a stable increasing trend. In Shanghai and Jiangsu, the mean RSEI values show a fluctuating characteristic of “falling and then rising”, and large respective decreases of 32.4% and 25.8% throughout the monitoring period. The RSEI values in Fujian Province showed a relatively stable upward trend during the study period (19% increase). (2) The RSEI spatially correlated clustering maps of the local indicators showed that the regions with a high degree of clustering are mainly located in Quzhou City, Zhejiang Province, Ningde City, Fujian Province, and northern Anhui Province (Bozhou and Huabei). With the promotion of ecological civilization and the enhancement of environmental protection awareness, the vegetation cover has significantly increased, which has led to the rise in RSEI values. The low values are mainly distributed in densely populated areas with more human activity, such as the central-eastern part of Jiangsu Province, central Anhui Province, Shanghai, and northern Zhejiang Province. With the development of cities, impervious surfaces occupy more and more ecological land, which eventually affects the regional RSEI values. (3) This research provides a promising method for the evaluation of spatial and temporal changes in ecological environment quality based on an RSEI and GEE. The image processing, based on GEE cloud computing, can help overcome the problems of missing remote sensing data, chromatic aberrations, and spatial and temporal inconsistency, which could greatly improve the efficiency of image processing and extend the application of the remote sensing ecological index to large-scale, long-term ecological monitoring. The research results can provide a reference for improving the applicability and accuracy of remote sensing ecological indices and provide a theoretical basis for ecological conservation and land management in the context of rapid urbanization.

Suggested Citation

  • Shangxiao Wang & Ming Zhang & Xi Xi, 2022. "Ecological Environment Evaluation Based on Remote Sensing Ecological Index: A Case Study in East China over the Past 20 Years," Sustainability, MDPI, vol. 14(23), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15771-:d:985497
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaole Wen & Yanli Ming & Yonggang Gao & Xinyu Hu, 2019. "Dynamic Monitoring and Analysis of Ecological Quality of Pingtan Comprehensive Experimental Zone, a New Type of Sea Island City, Based on RSEI," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
    2. Pietro Monforte & Maria Alessandra Ragusa, 2022. "Temperature Trend Analysis and Investigation on a Case of Variability Climate," Mathematics, MDPI, vol. 10(13), pages 1-13, June.
    3. Guo, Beibei & Fang, Yelin & Jin, Xiaobin & zhou, Yinkang, 2020. "Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing: A case study of Chaohu Lake Basin, China," Land Use Policy, Elsevier, vol. 95(C).
    4. Congjian Sun & Xiaoming Li & Wenqiang Zhang & Xingong Li, 2020. "Evolution of Ecological Security in the Tableland Region of the Chinese Loess Plateau Using a Remote-Sensing-Based Index," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    5. Xiaojun Zhang & Weiqiao Wang & Yunan Bai & Yong Ye, 2022. "How Has China Structured Its Ecological Governance Policy System?—A Case from Fujian Province," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Bi & Bianrong Chang & Fen Hou & Zihan Yang & Qi Fu & Bo Li, 2021. "Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang," IJERPH, MDPI, vol. 18(13), pages 1-23, July.
    2. Xueman Zuo & Jiazheng Li & Ludan Zhang & Zhilong Wu & Sen Lin & Xisheng Hu, 2023. "Spatio-Temporal Variations in Ecological Quality and Its Response to Topography and Road Network Based on GEE: Taking the Minjiang River Basin as a Case," Land, MDPI, vol. 12(9), pages 1-25, September.
    3. Qiang Liu & Feihong Yu & Xingmin Mu, 2022. "Evaluation of the Ecological Environment Quality of the Kuye River Source Basin Using the Remote Sensing Ecological Index," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    4. Meng Luo & Shengwei Zhang & Lei Huang & Zhiqiang Liu & Lin Yang & Ruishen Li & Xi Lin, 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    5. Fuyu Yang & Jingjing Xu & Xin Zhao & Xuekai Wang & Yi Xiong, 2022. "Assessment of the Grassland Ecological Compensation Policy (GECP) in Qinghai, China," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    6. Weilun Feng & Yurui Li, 2021. "Measuring the Ecological Safety Effects of Land Use Transitions Promoted by Land Consolidation Projects: The Case of Yan’an City on the Loess Plateau of China," Land, MDPI, vol. 10(8), pages 1-15, July.
    7. Kaizheng Xiang & Anzhou Zhao & Haixin Liu & Xiangrui Zhang & Anbing Zhang & Xinle Tian & Zihan Jin, 2022. "Spatiotemporal Evolution and Coupling Pattern Analysis of Urbanization and Ecological Environmental Quality of the Chinese Loess Plateau," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    8. Binhua Zhao & Jianchun Han & Peng Li & Hongtao Li & Yangfan Feng & Bingze Hu & Guojun Zhang & Jie Li, 2023. "Evidence for Urbanization Effects on Eco-Environmental Quality: A Case Study of Guyuan City, China," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    9. Luciano Barcellos-Paula & Anna María Gil-Lafuente & Aline Castro-Rezende, 2023. "Algorithm Applied to SDG13: A Case Study of Ibero-American Countries," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    10. Fan Wang & Pengtao Zhang & Guijun Zhang & Jiahao Cui, 2023. "Agricultural Land Quality Evaluation and Utilization Zoning Based on the Production–Ecology–Health Dimension: A Case Study of Huanghua City," Land, MDPI, vol. 12(7), pages 1-16, July.
    11. Jiehua Lv & Wen Zhou, 2023. "Ecological Environmental Quality in China: Spatial and Temporal Characteristics, Regional Differences, and Internal Transmission Mechanisms," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    12. Xinhai Lu & Bin Jiang & Mingqing Liu & Yuying Li & Danling Chen, 2022. "A Study on the Gains and Losses of the Ecosystem Service Value of the Land Consolidation Projects of Different Properties in Hubei Province: An Empirical Comparison Based on Plains, Mountains and Hill," Land, MDPI, vol. 11(7), pages 1-24, July.
    13. Zeke Lian & Huichao Hao & Jing Zhao & Kaizhong Cao & Hesong Wang & Zhechen He, 2022. "Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    14. Minxian Luo & Lifang Xiao & Xuhui Chen & Kaiqin Lin & Bao Liu & Zongming He & Jinfu Liu & Shiqun Zheng, 2022. "Invasive Alien Plants and Invasion Risk Assessment on Pingtan Island," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    15. Yuxia Zhao & Yang Wang & Zifan Zhang & Yi Zhou & Haoqing Huang & Ming Chang, 2023. "The Evolution of Landscape Patterns and Its Ecological Effects of Open-Pit Mining: A Case Study in the Heidaigou Mining Area, China," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    16. Mingqing Liu & Chaozheng Zhang & Xiaoyu Sun & Xupeng Zhang & Dongming Liao & Jiao Hou & Yaya Jin & Gaohui Wen & Bin Jiang, 2023. "Spatial Differentiation and Driving Mechanisms of Ecosystem Service Value Change in Rural Land Consolidation: Evidence from Hubei, China," Land, MDPI, vol. 12(6), pages 1-17, May.
    17. Jinmeng Lee & Xiaojun Yin & Honghui Zhu & Xin Zheng, 2023. "Geographical Detector-Based Research of Spatiotemporal Evolution and Driving Factors of Oasification and Desertification in Manas River Basin, China," Land, MDPI, vol. 12(8), pages 1-20, July.
    18. Yan Sun & Xiaojun Song & Jing Ma & Haochen Yu & Xiaoping Ge & Gang-Jun Liu & Fu Chen, 2021. "Assessing the Effectiveness for Achieving Policy Objectives of Land Consolidation in China: Evidence from Project Practices in Jiangsu Province from 2001 to 2017," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    19. Minjuan Lv & Zhiting Chen & Lingling Yao & Xiaohu Dang & Peng Li & Xiaoshu Cao, 2022. "Potential Zoning of Construction Land Consolidation in the Loess Plateau Based on the Evolution of Human–Land Relationship," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    20. Yin, Qiqi & Sui, Xueyan & Ye, Bei & Zhou, Yujie & Li, Chengqiang & Zou, Mengmeng & Zhou, Shenglu, 2022. "What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis," Land Use Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15771-:d:985497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.