IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14011-d955413.html
   My bibliography  Save this article

Exploring Spatiotemporal Dynamics of PM 2.5 Emission Based on Nighttime Light in China from 2012 to 2018

Author

Listed:
  • Deguang Li

    (School of Information Technology, Luoyang Normal University, Luoyang 471934, China)

  • Zhicheng Ding

    (College of Mechanical and Electrical Engineering, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China)

  • Jianghuan Liu

    (School of Information Technology, Luoyang Normal University, Luoyang 471934, China)

  • Qiurui He

    (School of Information Technology, Luoyang Normal University, Luoyang 471934, China)

  • Hamad Naeem

    (School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China)

Abstract

China’s coal-based energy structure and rapid economic expansion have resulted in significant air pollution, notably PM 2.5 pollution, which has harmed the environment, citizens’ health, and sustainable and cleaner development of China in recent years. Traditional ground monitoring stations have certain drawbacks, such as spatial distribution that is unequal. To better understand the spatial and temporal dynamic characteristics of PM 2.5 emissions, this article studied the temporal and spatial changes of night light data along PM 2.5 emission at the national, regional, and provincial scales. The Chinese Academy of Science’s Earth Luminous Data Set, Dalhousie University’s PM 2.5 emission dataset, and the basic national geographical dataset from National Geographic were used for analysis. We found a significant positive correlation between nightlight data and PM 2.5 emission data, which resulted in an accurate fitting of PM 2.5 emissions using the proposed linear regression model, and the results showed that the spatiotemporal dynamics of PM 2.5 emission and night light were different in various regions. In terms of spatial distribution, PM 2.5 emission over the intermediate level (44% of China’s total area) was concentrated in the Sichuan Basin, North China Plain, and Northwest China, whereas PM 2.5 emission below the middle level (55% of China’s total area) was concentrated in northeast China, Xizang, and West Sichuan. In terms of geographical and temporal dynamics, more than 65% of China’s total, area mainly located in the south of the Hu line, showed negative growth from 2012 to 2018, especially the North China Plain, the Sichuan Basin, and the Yangtze River’s Plains showed a lot of negative growth. The evolution of PM 2.5 emission in China from 2012 to 2018 was visually exhibited by examining spatiotemporal dynamics and the interaction linkages between PM 2.5 emission and nighttime light, which was useful for China’s air pollution control and sustainable development.

Suggested Citation

  • Deguang Li & Zhicheng Ding & Jianghuan Liu & Qiurui He & Hamad Naeem, 2022. "Exploring Spatiotemporal Dynamics of PM 2.5 Emission Based on Nighttime Light in China from 2012 to 2018," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14011-:d:955413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14011/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14011/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    2. Zhaoxin Dai & Yunfeng Hu & Guanhua Zhao, 2017. "The Suitability of Different Nighttime Light Data for GDP Estimation at Different Spatial Scales and Regional Levels," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Wenxiao & Lin, Chen & Chen, Wei & Hong, Jinglan & Chang, Jingcai & Dong, Yong & Zhang, Yanlu, 2017. "Environmental effect of current desulfurization technology on fly dust emission in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1-9.
    2. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    3. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    4. Yu Zhang & Jiayu Wu & Chunyao Zhou & Qingyu Zhang, 2019. "Installation Planning in Regional Thermal Power Industry for Emissions Reduction Based on an Emissions Inventory," IJERPH, MDPI, vol. 16(6), pages 1-13, March.
    5. GIBSON, John & ZHANG, Xiaoxuan & PARK, Albert & YI, Jiang & XI, Li, 2024. "Remotely measuring rural economic activity and poverty : Do we just need better sensors?," CEI Working Paper Series 2023-08, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    6. Luyao Wang & Hong Fan & Yankun Wang, 2018. "Estimation of consumption potentiality using VIIRS night-time light data," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    7. Ruiqing Ma & Yeyue Zhang & Yini Zhang & Xi Li & Zheng Ji, 2023. "The Relationship between the Transmission of Different SARS-CoV-2 Strains and Air Quality: A Case Study in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    8. Qian Chen & Tingting Ye & Naizhuo Zhao & Mingjun Ding & Zutao Ouyang & Peng Jia & Wenze Yue & Xuchao Yang, 2021. "Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environment and Planning B, , vol. 48(7), pages 1876-1894, September.
    9. Jie Yang & Pengfei Liu & Hongquan Song & Changhong Miao & Feng Wang & Yu Xing & Wenjie Wang & Xinyu Liu & Mengxin Zhao, 2021. "Effects of Anthropogenic Emissions from Different Sectors on PM 2.5 Concentrations in Chinese Cities," IJERPH, MDPI, vol. 18(20), pages 1-13, October.
    10. Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
    11. Diyi Liu & Kun Cheng & Kevin Huang & Hui Ding & Tiantong Xu & Zhenni Chen & Yanqi Sun, 2022. "Visualization and Analysis of Air Pollution and Human Health Based on Cluster Analysis: A Bibliometric Review from 2001 to 2021," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    12. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    13. Xuan Sun & Wenting Yang & Tao Sun & Ya Ping Wang, 2018. "Negative Emotion under Haze: An Investigation Based on the Microblog and Weather Records of Tianjin, China," IJERPH, MDPI, vol. 16(1), pages 1-15, December.
    14. Guangzhi Qi & Zhibao Wang & Zhixiu Wang & Lijie Wei, 2022. "Has Industrial Upgrading Improved Air Pollution?—Evidence from China’s Digital Economy," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    15. Mao Mao & Xiaolin Zhang & Yan Yin, 2018. "Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications," IJERPH, MDPI, vol. 15(6), pages 1-29, May.
    16. Jesson A. Pagaduan, 2022. "Do higher‐quality nighttime lights and net primary productivity predict subnational GDP in developing countries? Evidence from the Philippines," Asian Economic Journal, East Asian Economic Association, vol. 36(3), pages 288-317, September.
    17. Yucong Miao & Shuhua Liu & Li Sheng & Shunxiang Huang & Jian Li, 2019. "Influence of Boundary Layer Structure and Low-Level Jet on PM 2.5 Pollution in Beijing: A Case Study," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    18. Yanjun Wang & Fei Teng & Mengjie Wang & Shaochun Li & Yunhao Lin & Hengfan Cai, 2022. "Monitoring Spatiotemporal Distribution of the GDP of Major Cities in China during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(13), pages 1-29, June.
    19. Shiyuan Ding & Yingying Chen & Qinkai Li & Xiao-Dong Li, 2022. "Using Stable Sulfur Isotope to Trace Sulfur Oxidation Pathways during the Winter of 2017–2019 in Tianjin, North China," IJERPH, MDPI, vol. 19(17), pages 1-12, September.
    20. Dongsheng Zhan & Mei-Po Kwan & Wenzhong Zhang & Shaojian Wang & Jianhui Yu, 2017. "Spatiotemporal Variations and Driving Factors of Air Pollution in China," IJERPH, MDPI, vol. 14(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14011-:d:955413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.