IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i14p8461-d859947.html
   My bibliography  Save this article

Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020

Author

Listed:
  • Xiang Li

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
    These authors contributed equally to this work.)

  • Gang Lin

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Dong Jiang

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 100812, China)

  • Jingying Fu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Coupling Processes and Effects of Natural Resource Elements, Ministry of Natural Resources, Beijing 100055, China)

  • Yaxin Wang

    (Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China)

Abstract

With the increase in global carbon dioxide emissions, China has put forward the goals of a carbon peak and carbon neutrality (double carbon) and formulated an action plan to consolidate and enhance the carbon sink capacity of the ecosystem. The Chinese grassland ecosystem (CGE) is widely distributed and is the key link for China to achieve the double carbon objectives. However, there is a relative lack of research on carbon sources and sinks in the CGE, so it is urgent to integrate and analyze the carbon sources and sinks in the grassland ecosystem on the national scale. Based on the refined grid data, the net ecosystem productivity (NEP) of the CGE was estimated by coupling the vegetation production model and soil respiration model. The results showed that the cumulative carbon sequestration of the CGE was 14.46 PgC from 2010 to 2020. In terms of spatial distribution, this shows that the differentiation characteristics are high in the northwest of China and low in the southeast of China, which strongly corresponds with the 400 mm isohyet and 0 °C isotherm of China. The results of the correlation analysis showed that the NEP of the CGE was positively correlated with precipitation and negatively correlated with temperature; that is, precipitation mainly promotes the accumulation of NEP, and temperature mainly inhibits it. The coupling effect of temperature and precipitation jointly affects the spatial change of carbon sources and sinks of the CGE. This study can provide a scientific basis for government departments to formulate targeted policies to deal with climate change, which is of great significance for China to improve ecosystem management, ensure ecological security and promote the realization of China’s double carbon goal.

Suggested Citation

  • Xiang Li & Gang Lin & Dong Jiang & Jingying Fu & Yaxin Wang, 2022. "Spatiotemporal Evolution Characteristics and the Climatic Response of Carbon Sources and Sinks in the Chinese Grassland Ecosystem from 2010 to 2020," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8461-:d:859947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/14/8461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/14/8461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    2. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    3. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    4. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    5. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    6. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    7. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    8. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    9. Dongjie Wang & Hao Yang & Yueming Hu & A-Xing Zhu & Xiaoyun Mao, 2022. "Analyzing Spatio-Temporal Characteristics of Cultivated Land Fragmentation and Their Influencing Factors in a Rapidly Developing Region: A Case Study in Guangdong Province, China," Land, MDPI, vol. 11(10), pages 1-21, October.
    10. Xuemao Zhang & Binggeng Xie & Junhan Li & Chuan Yuan, 2023. "Spatiotemporal Distribution and Driving Force Analysis of the Ecosystem Service Value in the Fujiang River Basin, China," Land, MDPI, vol. 12(2), pages 1-16, February.
    11. Qiangqiang Yang & Pian Zhang & Xiaocong Qiu & Guanglai Xu & Jianyu Chi, 2023. "Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    12. Guannan Dong & Zhengjia Liu & Guoming Du & Jinwei Dong & Kai Liu, 2022. "Assessment of vegetation damage by three typhoons (Bavi, Maysak, and Haishen) in Northeast China in 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2883-2899, December.
    13. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    14. Diogo Duarte & Cidália Fonte & Hugo Costa & Mário Caetano, 2023. "Thematic Comparison between ESA WorldCover 2020 Land Cover Product and a National Land Use Land Cover Map," Land, MDPI, vol. 12(2), pages 1-16, February.
    15. Bisrat Haile Gebrekidan & Thomas Heckelei & Sebastian Rasch, 2020. "Characterizing Farmers and Farming System in Kilombero Valley Floodplain, Tanzania," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    16. Gebrekidan, B.H., 2018. "Modeling Farmers Intensi cation Decisions with a Bayesian Belief Network: The case of the Kilombero Floodplain in Tanzania," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277081, International Association of Agricultural Economists.
    17. Yuan Meng & Dongyang Hou & Hanfa Xing, 2017. "Rapid Detection of Land Cover Changes Using Crowdsourced Geographic Information: A Case Study of Beijing, China," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    18. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    19. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.
    20. Zhang, Shaoyao & Deng, Wei & Zhang, Hao & Wang, Zhanyun, 2023. "Identification and analysis of transitional zone patterns along urban-rural-natural landscape gradients: An application to China’s southwest mountains," Land Use Policy, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:14:p:8461-:d:859947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.