IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8166-d855663.html
   My bibliography  Save this article

Intelligent Assessment for Visual Quality of Streets: Exploration Based on Machine Learning and Large-Scale Street View Data

Author

Listed:
  • Jing Zhao

    (College of Intelligence and Computing, Tianjin University, Tianjin 300350, China)

  • Qi Guo

    (College of Intelligence and Computing, Tianjin University, Tianjin 300350, China)

Abstract

At present, the collection and analysis of large amounts of key data for the visual quality assessment of streets are performed manually. The assessment efficiency is not high, and the effective information is not fully explored. This study aims to establish an intelligent method for assessing the visual quality of streets. Taking the Hexi District of Tianjin as an example and using street view images as the assessment medium, an assessment model of objective physical indicators is established based on PaddleSeg, an assessment model of subjective perceptual indicators is established based on neural image assessment, and a visual quality assessment model of streets is established based on a random forest. The above models can intelligently evaluate the visual quality of streets and key indicators affecting visual quality. The influence of each key indicator on the visual quality of streets and the relationship between objective physical indicators and subjective perceptual indicators are analyzed. Through a combination of subjective and objective as well as qualitative and quantitative methods, the results show satisfactory assessment accuracy. In short, this study uses machine-learning techniques to improve the scientific rigor and efficiency of visual quality assessment and expand the scale of visual quality assessment data.

Suggested Citation

  • Jing Zhao & Qi Guo, 2022. "Intelligent Assessment for Visual Quality of Streets: Exploration Based on Machine Learning and Large-Scale Street View Data," Sustainability, MDPI, vol. 14(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8166-:d:855663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8166/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8166/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Ye & Wei Zeng & Qiaomu Shen & Xiaohu Zhang & Yi Lu, 2019. "The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images," Environment and Planning B, , vol. 46(8), pages 1439-1457, October.
    2. André Cavalcante & Ahmed Mansouri & Lemya Kacha & Allan Kardec Barros & Yoshinori Takeuchi & Naoji Matsumoto & Noboru Ohnishi, 2014. "Measuring Streetscape Complexity Based on the Statistics of Local Contrast and Spatial Frequency," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalid Mohammed Almatar, 2024. "Rehumanize the Streets and Make Them More Smart and Livable in Arab Cities: Case Study: Tahlia Street; Riyadh City, Saudi Arabia," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    2. Kanyou Sou & Hiroya Shiokawa & Kento Yoh & Kenji Doi, 2021. "Street Design for Hedonistic Sustainability through AI and Human Co-Operative Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    3. Marianne Gatti & Markus Nollert & Elena Pibernik, 2022. "Regulating Façade Length for Streetscapes of Human Scale," Land, MDPI, vol. 11(12), pages 1-27, December.
    4. Yibang Zhang & Yukun Zou & Zhenjun Zhu & Xiucheng Guo & Xin Feng, 2022. "Evaluating Pedestrian Environment Using DeepLab Models Based on Street Walkability in Small and Medium-Sized Cities: Case Study in Gaoping, China," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    5. Andrew Crooks & Linda See, 2022. "Leveraging Street Level Imagery for Urban Planning," Environment and Planning B, , vol. 49(3), pages 773-776, March.
    6. Jiacheng Shi & Yu Yan & Mingxuan Li & Long Zhou, 2024. "Measuring the Convergence and Divergence in Urban Street Perception among Residents and Tourists through Deep Learning: A Case Study of Macau," Land, MDPI, vol. 13(3), pages 1-29, March.
    7. Jingxiong Huang & Jiaqi Liang & Mengsheng Yang & Yuan Li, 2022. "Visual Preference Analysis and Planning Responses Based on Street View Images: A Case Study of Gulangyu Island, China," Land, MDPI, vol. 12(1), pages 1-15, December.
    8. Yiwei Bai & Yihang Bai & Ruoyu Wang & Tianren Yang & Xinyao Song & Bo Bai, 2023. "Exploring Associations between the Built Environment and Cycling Behaviour around Urban Greenways from a Human-Scale Perspective," Land, MDPI, vol. 12(3), pages 1-19, March.
    9. Jia Tao & Meng Yang & Jing Wu, 2022. "Coupling Coordination Evaluation of Lakefront Landscape Spatial Quality and Public Sentiment," Land, MDPI, vol. 11(6), pages 1-29, June.
    10. Md Amiruzzaman & Andrew Curtis & Ye Zhao & Suphanut Jamonnak & Xinyue Ye, 2021. "Classifying crime places by neighborhood visual appearance and police geonarratives: a machine learning approach," Journal of Computational Social Science, Springer, vol. 4(2), pages 813-837, November.
    11. Mehmet Isiler & Mustafa Yanalak & Muhammed Enes Atik & Saziye Ozge Atik & Zaide Duran, 2023. "A Semi-Automated Two-Step Building Stock Monitoring Methodology for Supporting Immediate Solutions in Urban Issues," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    12. Yu Ye & Hanting Xie & Jia Fang & Hetao Jiang & De Wang, 2019. "Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    13. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    14. Md Amiruzzaman & Ye Zhao & Stefanie Amiruzzaman & Aryn C. Karpinski & Tsung Heng Wu, 2023. "An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables," Journal of Computational Social Science, Springer, vol. 6(1), pages 315-337, April.
    15. Fengrui Jing & Lin Liu & Suhong Zhou & Jiangyu Song & Linsen Wang & Hanlin Zhou & Yiwen Wang & Ruofei Ma, 2021. "Assessing the Impact of Street-View Greenery on Fear of Neighborhood Crime in Guangzhou, China," IJERPH, MDPI, vol. 18(1), pages 1-17, January.
    16. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    17. Boeing, Geoff, 2018. "Measuring the Complexity of Urban Form and Design," SocArXiv bxhrz, Center for Open Science.
    18. Mahsa Farahani & Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Soo-Mi Choi, 2023. "A Hybridization of Spatial Modeling and Deep Learning for People’s Visual Perception of Urban Landscapes," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    19. Mingshu Wang & Floris Vermeulen, 2021. "Life between buildings from a street view image: What do big data analytics reveal about neighbourhood organisational vitality?," Urban Studies, Urban Studies Journal Limited, vol. 58(15), pages 3118-3139, November.
    20. Xiaofei Li & Chunyu Pang, 2024. "A Spatial Visual Quality Evaluation Method for an Urban Commercial Pedestrian Street Based on Streetscape Images—Taking Tianjin Binjiang Road as an Example," Sustainability, MDPI, vol. 16(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8166-:d:855663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.