IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2665-d508898.html
   My bibliography  Save this article

The Discussion of Potential Care Needs for Physically and Mentally Disabled Citizens in Taipei City by Using Spatial Analysis

Author

Listed:
  • Jui-Hung Kao

    (Department of Information Management, Shih Hsin University, Taipei 116005, Taiwan)

  • Wei-Chen Wu

    (Department of Finance, Feng Chia University, Taichung 407802, Taiwan)

  • Cheng-Hu Chow

    (Department of Public Policy and Management, Shih Hsin University, Taipei 116005, Taiwan)

  • Horng-Twu Liaw

    (Department of Information Management, Shih Hsin University, Taipei 116005, Taiwan)

Abstract

What this research may achieve points towards the need to progressively improve the reasonableness in establishing Social Welfare Agencies (SWAs). The service capacity of SWAs is far below the population of the level III extremely disabled. This is a serious problem. This evaluation can assist social welfare and public health departments to determine what locations to approve for establishing SWAs in the short term and plan for new SWAs more precisely, as well as rein in budgetary priorities. As an illustration, in considering the distance between SWAs and the extremely disabled, the service quality of SWAs and fairness in the planning have to be taken into account. Introducing a Service Quantity Needed-Index for SWAs (SNIS) into the current measure of approving and planning new SWAs shall assist the departments in distributing social welfare resources to areas most in need of help. In addition, using the modified data to recalculate SNIS can examine needs regularly. Employing basic statistical areas for short-term applications in Taipei City SWA projects, considering the distance between SWAs and the extremely disabled, the agencies’ service quality and fairness in the planning of SWAs need to receive more attention. Previous research mostly employed straight-line distances rather than road distances. To a certain extent, this overlooked the actual capacity of roads as well as led to some degree of discrepancies in evaluations. This essay focuses on calculating SNIS, mainly towards guiding the establishment of facilities and concretely proposing how to optimize their locations. Future research can add in needs at that time in accordance with current evaluation results to propose plans to optimize the locations, or maybe integrate weights of disability to adjust multiple requirements of SWAs.

Suggested Citation

  • Jui-Hung Kao & Wei-Chen Wu & Cheng-Hu Chow & Horng-Twu Liaw, 2021. "The Discussion of Potential Care Needs for Physically and Mentally Disabled Citizens in Taipei City by Using Spatial Analysis," Sustainability, MDPI, vol. 13(5), pages 1-11, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2665-:d:508898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2665/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Wu & Lingbo Liu & Yang Yu & Zhenghong Peng, 2018. "Evaluation and Planning of Urban Green Space Distribution Based on Mobile Phone Data and Two-Step Floating Catchment Area Method," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    2. Yicheol Han & Stephan J. Goetz & Claudia Schmidt, 2021. "Visualizing Spatial Economic Supply Chains to Enhance Sustainability and Resilience," Sustainability, MDPI, vol. 13(3), pages 1-15, February.
    3. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivanize Silva & Rafael Santos & António Lopes & Virgínia Araújo, 2018. "Morphological Indices as Urban Planning Tools in Northeastern Brazil," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    2. Miloslava Plachkinova & Au Vo & Brian Hilton & Rahul Bhaskar, 2018. "Response to Delamater’s Comment on “A Conceptual Framework for Quality Healthcare Accessibility: A Scalable Approach for Big Data Technologies”," Information Systems Frontiers, Springer, vol. 20(2), pages 311-314, April.
    3. Zhengna Song & Tinggan Yan & Yunjian Ge, 2018. "Spatial Equilibrium Allocation of Urban Large Public General Hospitals Based on the Welfare Maximization Principle: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    4. Jing Wu & Jingwen Li & Yue Ma, 2019. "Exploring the Relationship between Potential and Actual of Urban Waterfront Spaces in Wuhan Based on Social Networks," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    5. Yoon Ha Lee & Ji Soo Lee & Seung Chan Baek & Won Hwa Hong, 2020. "Spatial Equity with Census Population Data vs. Floating Population Data: The Distribution of Earthquake Evacuation Shelters in Daegu, South Korea," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    6. Havinga, Ilan & Bogaart, Patrick W. & Hein, Lars & Tuia, Devis, 2020. "Defining and spatially modelling cultural ecosystem services using crowdsourced data," Ecosystem Services, Elsevier, vol. 43(C).
    7. Areum Jo & Sang-Kyeong Lee & Jaecheol Kim, 2020. "Gender Gaps in the Use of Urban Space in Seoul: Analyzing Spatial Patterns of Temporary Populations Using Mobile Phone Data," Sustainability, MDPI, vol. 12(16), pages 1-22, August.
    8. Lingbo Liu & Zhenghong Peng & Hao Wu & Hongzan Jiao & Yang Yu, 2018. "Exploring Urban Spatial Feature with Dasymetric Mapping Based on Mobile Phone Data and LUR-2SFCAe Method," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    9. Xiaomeng Zhu & Zhijun Tong & Xingpeng Liu & Xiangqian Li & Pengda Lin & Tong Wang, 2018. "An Improved Two-Step Floating Catchment Area Method for Evaluating Spatial Accessibility to Urban Emergency Shelters," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    10. Aurélie Mercier & Stéphanie Souche‐Le Corvec & Nicolas Ovtracht, 2021. "Measure of accessibility to postal services in France: A potential spatial accessibility approach applied in an urban region," Papers in Regional Science, Wiley Blackwell, vol. 100(1), pages 227-249, February.
    11. Meihan Jin & Lu Liu & De Tong & Yongxi Gong & Yu Liu, 2019. "Evaluating the Spatial Accessibility and Distribution Balance of Multi-Level Medical Service Facilities," IJERPH, MDPI, vol. 16(7), pages 1-19, March.
    12. Min Liu & Xiaoma Li & Ding Song & Hui Zhai, 2021. "Evaluation and Monitoring of Urban Public Greenspace Planning Using Landscape Metrics in Kunming," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    13. Hongzan Jiao & Chengcong Li & Yang Yu & Zhenghong Peng, 2020. "Urban Public Green Space Equity against the Context of High-Speed Urbanization in Wuhan, Central China," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    14. Lingbo Liu & Zhenghong Peng & Hao Wu & Hongzan Jiao & Yang Yu & Jie Zhao, 2018. "Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    15. Kunyuan Wanghe & Xinle Guo & Xiaofeng Luan & Kai Li, 2019. "Assessment of Urban Green Space Based on Bio-Energy Landscape Connectivity: A Case Study on Tongzhou District in Beijing, China," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    16. Yu Zheng & Shan Wang & Jinli Zhu & Shuo Huang & Linli Cheng & Jianwen Dong & Yuxiang Sun, 2023. "A Comprehensive Evaluation of Supply and Demand in Urban Parks along “Luck Greenway” in Fuzhou," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    17. Li, Xianghua & Deng, Yue & Yuan, Xuesong & Wang, Zhen & Gao, Chao, 2022. "Data-driven behavioral analysis and applications: A case study in Changchun, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Lige Xu & Kailun Fang & Yu Huang & Shuangyu Xu, 2023. "Demand Priority of Green Space from the Perspective of Carbon Emissions and Storage," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    19. Jan Jekl & Jiří Jánský, 2022. "Security Challenges and Economic-Geographical Metrics for Analyzing Safety to Achieve Sustainable Protection," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2665-:d:508898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.