IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12772-d682340.html
   My bibliography  Save this article

Enhancing Effect of Waste Engine Oil Bottom Incorporation on the Performance of CR+SBS Modified Bitumen: A Sustainable and Environmentally-Friendly Solution for Wastes

Author

Listed:
  • Changjiang Liu

    (School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China
    Shaanxi Province Transport Planning Design and Research Institute, Xi’an 710065, China)

  • Qiuping Wang

    (School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China)

Abstract

Waste engine oil bottom (WEOB) is a hazardous waste whose effect as an additive to CR+SBS modified asphalt is rarely studied. In this study, the CR+SBS asphalt binder was modified with WEOB in different concentrations (3, 6, and 9 wt%). The GC–MS and FTIR were performed to evaluate the chemical compositions of WEOB and WEOBCR+SBS asphalt. The results showed that the main constituents of WEOB were similar to the functional groups of asphalt, along with maleic anhydride (MAH). Pavement performance-related rheological tests such as RV, temperature sweep (TS), FS, MSCR, and BBR were carried out. Results show that WEOBCR+SBS-6 exhibited the best high- and low-temperature property, followed by CR+SBS-3 and CR+SBS-9. Fluorescence microscope (FM) test, bar thin layer chromatograph (BTLC) test, FTIR, and AFM tests were carried out to evaluate the micro-morphologies and modification mechanism. The analysis revealed increased trends in resin fraction as opposed to asphaltene fraction with the increase of WEOB content. FTIR analysis revealed that the amide groups in WEOBCR+SBS asphalt bonded to the free radicals of CR. Moreover, a modification mechanism was elaborated. WEOB strengthens the cross-linked structure of CR+SBS polymers, reacting with SBS to graft onto MAH-g-SBS, and the free radical of CR interacts with the amide group in WEOB to form a bond. In addition, the content of lightweight components and surface roughness of SBS specimens were in good correlation, which contributed to the rutting resistance and adhesion and self-healing performance.

Suggested Citation

  • Changjiang Liu & Qiuping Wang, 2021. "Enhancing Effect of Waste Engine Oil Bottom Incorporation on the Performance of CR+SBS Modified Bitumen: A Sustainable and Environmentally-Friendly Solution for Wastes," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12772-:d:682340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12772/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12772-:d:682340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.