IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9126-d614582.html
   My bibliography  Save this article

Indoor and Outdoor Particle Number Concentration in the Sapienza University Campus of Rome

Author

Listed:
  • Alessandro Di Menno di Bucchianico

    (ISPRA—Italian National Institute for Environmental Protection and Research, Via Brancati 48, 00144 Rome, Italy)

  • Mariacarmela Cusano

    (ISPRA—Italian National Institute for Environmental Protection and Research, Via Brancati 48, 00144 Rome, Italy)

  • Raffaela Gaddi

    (ISPRA—Italian National Institute for Environmental Protection and Research, Via Brancati 48, 00144 Rome, Italy)

  • Alessandra Gaeta

    (ISPRA—Italian National Institute for Environmental Protection and Research, Via Brancati 48, 00144 Rome, Italy)

  • Gianluca Leone

    (ISPRA—Italian National Institute for Environmental Protection and Research, Via Brancati 48, 00144 Rome, Italy)

  • Fabio Boccuni

    (INAIL—Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy)

  • Riccardo Ferrante

    (INAIL—Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy)

  • Armando Pelliccioni

    (INAIL—Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy)

  • Giorgio Cattani

    (ISPRA—Italian National Institute for Environmental Protection and Research, Via Brancati 48, 00144 Rome, Italy)

Abstract

Exposure to ultrafine particles has been associated with short- and long-term effects on human health. The object of this paper was to assess Particle Number Concentration (PNC) and size distribution in a university environment and study the indoor/outdoor relationships. Measurements were carried out using co-located (indoor/outdoor) condensation particle counters and size spectrometers during two seasonal periods characterized by different meteorological conditions at five selected classrooms different for size, capacity, floor and use destination. PNC was dominated by particles in the ultrafine mode both indoor and outdoor. The indoor/outdoor ratios were on average between 1 and 1.2 in the summer and between 0.6 and 0.9 in the winter. Mostly the differences found among classrooms could be related to the condition of use (i.e., crowding, natural air exchange, air conditioning, seasonality). Only little differences were found among PNC measured immediately outside the classrooms. Based on information taken during the measurement campaigns, on the classrooms condition of use, it was possible to assess as a source of indoor particles in the coarse mode, the presence of students and teachers.

Suggested Citation

  • Alessandro Di Menno di Bucchianico & Mariacarmela Cusano & Raffaela Gaddi & Alessandra Gaeta & Gianluca Leone & Fabio Boccuni & Riccardo Ferrante & Armando Pelliccioni & Giorgio Cattani, 2021. "Indoor and Outdoor Particle Number Concentration in the Sapienza University Campus of Rome," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9126-:d:614582
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Boccuni & Riccardo Ferrante & Francesca Tombolini & Sergio Iavicoli & Armando Pelliccioni, 2021. "Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    2. Armando Pelliccioni & Paolo Monti & Giorgio Cattani & Fabio Boccuni & Marco Cacciani & Silvia Canepari & Pasquale Capone & Maria Catrambone & Mariacarmela Cusano & Maria Concetta D’Ovidio & Antonella , 2020. "Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Salvadori & Maria Grazia Badas & Annalisa Di Bernardino & Giorgio Querzoli & Simone Ferrari, 2021. "A Street Graph-Based Morphometric Characterization of Two Large Urban Areas," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Armando Pelliccioni & Virginia Ciardini & Andrea Lancia & Simona Di Renzi & Maria Antonia Brighetti & Alessandro Travaglini & Pasquale Capone & Maria Concetta D’Ovidio, 2021. "Intercomparison of Indoor and Outdoor Pollen Concentrations in Rural and Suburban Research Workplaces," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    3. Andrea Lancia & Pasquale Capone & Nicoletta Vonesch & Armando Pelliccioni & Carlo Grandi & Donatella Magri & Maria Concetta D’Ovidio, 2021. "Research Progress on Aerobiology in the Last 30 Years: A Focus on Methodology and Occupational Health," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    4. Olga Palusci & Carlo Cecere, 2022. "Urban Ventilation in the Compact City: A Critical Review and a Multidisciplinary Methodology for Improving Sustainability and Resilience in Urban Areas," Sustainability, MDPI, vol. 14(7), pages 1-44, March.
    5. Armando Pelliccioni & Livia Grandoni & Annalisa Di Bernardino, 2021. "Evaluation of Profiles of Standard Deviation of Vertical Wind in the Urban Area of Rome: Performances of Monin–Obukhov Similarity Theory Using Different Scaling Variables," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    6. Claudio Natale & Riccardo Ferrante & Fabio Boccuni & Francesca Tombolini & Maria Sabrina Sarto & Sergio Iavicoli, 2022. "Occupational Exposure to Silica Nanoparticles: Evaluation of Emission Fingerprints by Laboratory Simulations," Sustainability, MDPI, vol. 14(16), pages 1-11, August.
    7. Zhihan Luo & Ran Xing & Wenxuan Huang & Rui Xiong & Lifan Qin & Yuxuan Ren & Yaojie Li & Xinlei Liu & Yatai Men & Ke Jiang & Yanlin Tian & Guofeng Shen, 2022. "Impacts of Household Coal Combustion on Indoor Ultrafine Particles—A Preliminary Case Study and Implication on Exposure Reduction," IJERPH, MDPI, vol. 19(9), pages 1-11, April.
    8. Monica Gherardi & Andrea Gordiani & Nunziata L’Episcopo & Armando Pelliccioni, 2021. "Carcinogenic Content of PM 10 -Bound PAHs in University Classrooms and Outdoors at an Urban Location in Rome, Italy, during Winter Working and Not-Working Days," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    9. Luca Tofful & Maria Catrambone & Marco Giusto & Salvatore Pareti & Elena Rantica & Tiziana Sargolini & Silvia Canepari & Maria Agostina Frezzini & Lorenzo Massimi & Martina Ristorini & Armando Pellicc, 2021. "Seasonal Variations in the Chemical Composition of Indoor and Outdoor PM 10 in University Classrooms," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    10. Fabio Boccuni & Riccardo Ferrante & Francesca Tombolini & Sergio Iavicoli & Armando Pelliccioni, 2021. "Relationship between Indoor High Frequency Size Distribution of Ultrafine Particles and Their Metrics in a University Site," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    11. Maria Concetta D’Ovidio & Simona Di Renzi & Pasquale Capone & Armando Pelliccioni, 2021. "Pollen and Fungal Spores Evaluation in Relation to Occupants and Microclimate in Indoor Workplaces," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    12. Francesca Marcovecchio & Cinzia Perrino, 2021. "Bioaerosol Contribution to Atmospheric Particulate Matter in Indoor University Environments," Sustainability, MDPI, vol. 13(3), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9126-:d:614582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.