IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8998-d612728.html
   My bibliography  Save this article

Assessment of a Municipal Solid Waste Incinerator Bottom Ash as a Candidate Pozzolanic Material: Comparison of Test Methods

Author

Listed:
  • Flora Faleschini

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
    Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Klajdi Toska

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Mariano Angelo Zanini

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Filippo Andreose

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

  • Alessio Giorgio Settimi

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Katya Brunelli

    (Department of Industrial Engineering, University of Padova, 35131 Padova, Italy)

  • Carlo Pellegrino

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy)

Abstract

New generations of green concretes are often consuming large amounts of industrial waste, as recycled or manufactured aggregates and alternative binders substituting ordinary Portland cement. Among the recycled materials that may be used in civil engineering works, construction and demolition waste (C&DW), fly ashes, slags and municipal solid waste incinerator bottom ashes (MSWI BA) are those most diffused, but at the same, they suffer due to a large variability of their properties. However, the market increasingly asks for new materials capable of adding some specific features to construction materials, and one of the most interesting is the pozzolanic activity. Hence, this work deals with an experimental study aimed at assessing the technical feasibility of using an industrial waste comprised largely of MSWI BA, with small quantities of C&DW and electric arc furnace slag (EAFS), in green cement-based mixtures (cement paste and mortars). The aim of the work is to achieve the goal of upcycling such waste and avoiding its disposal and landfilling. Particularly, the test methods for assessing the pozzolanic activity of this waste are discussed, analyzing the efficacy of indirect methods such as the strength activity index (SAI), the conductivity test and the efficiency factor (k), together with a direct method based on lime consumption.

Suggested Citation

  • Flora Faleschini & Klajdi Toska & Mariano Angelo Zanini & Filippo Andreose & Alessio Giorgio Settimi & Katya Brunelli & Carlo Pellegrino, 2021. "Assessment of a Municipal Solid Waste Incinerator Bottom Ash as a Candidate Pozzolanic Material: Comparison of Test Methods," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8998-:d:612728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Fouad Alnahhal & Ubagaram Johnson Alengaram & Mohd Zamin Jumaat & Mamoun A. Alqedra & Kim Hung Mo & Mathialagan Sumesh, 2017. "Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fausto Minelli & Enzo Martinelli & Luca Facconi, 2021. "Innovative Structural Applications of High Performance Concrete Materials in Sustainable Construction," Sustainability, MDPI, vol. 13(22), pages 1-2, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao-Wei Tang, 2018. "Properties of Fired Bricks Incorporating TFT-LCD Waste Glass Powder with Reservoir Sediments," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    2. Shi Ying Kwek & Hanizam Awang, 2021. "Utilisation of Recycled Silt from Water Treatment and Palm Oil Fuel Ash as Geopolymer Artificial Lightweight Aggregate," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    3. Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2018. "Rice Hulls as a Renewable Complex Material Resource," Resources, MDPI, vol. 7(2), pages 1-11, May.
    4. Shazim Ali Memon & Israr Wahid & Muhammad Khizar Khan & Muhammad Ashraf Tanoli & Madina Bimaganbetova, 2018. "Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
    5. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    6. Afonso Miguel Solak & Antonio José Tenza-Abril & José Miguel Saval & Victoria Eugenia García-Vera, 2018. "Effects of Multiple Supplementary Cementitious Materials on Workability and Segregation Resistance of Lightweight Aggregate Concrete," Sustainability, MDPI, vol. 10(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8998-:d:612728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.