IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i1p349-d304175.html
   My bibliography  Save this article

LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists

Author

Listed:
  • Alessandro Crivellari

    (Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria)

  • Euro Beinat

    (Department of Geoinformatics—Z_GIS, University of Salzburg, 5020 Salzburg, Austria)

Abstract

The increasing availability of trajectory recordings has led to the mining of a massive amount of historical track data, allowing for a better understanding of travel behaviors by revealing meaningful motion patterns. In the context of human mobility analysis, the problem of motion prediction assumes a central role and is beneficial for a wide range of applications, including for touristic purposes, such as personalized services or targeted recommendations, and sustainability studies related to crowd management and resource redistribution. This paper tackles a particular case of the trajectory prediction problem, focusing on large-scale mobility traces of short-term foreign tourists. These sparse trajectories, short and non-repetitive, lack spatial and temporal regularity, making prediction analysis based on individual historical motion data unreliable. To face this issue, we hereby propose a deep learning-based approach, taking into account the collective mobility of tourists over the territory. The underlying semantics of motion patterns are captured by means of a long short-term memory (LSTM) neural network model trained on pre-processed location sequences, aiming to predict the next visited place in the trajectory. We tested the methodology on a real-world big dataset, demonstrating its higher feasibility with respect to traditional approaches.

Suggested Citation

  • Alessandro Crivellari & Euro Beinat, 2020. "LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists," Sustainability, MDPI, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:349-:d:304175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Ling-Zhong & Yeh, Huery-Ren, 2013. "Analysis of tour values to develop enablers using an interpretive hierarchy-based model in Taiwan," Tourism Management, Elsevier, vol. 34(C), pages 133-144.
    2. Dong, Ming & He, David, 2007. "Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis," European Journal of Operational Research, Elsevier, vol. 178(3), pages 858-878, May.
    3. Miltiadis D. Lytras & Anna Visvizi, 2018. "Who Uses Smart City Services and What to Make of It: Toward Interdisciplinary Smart Cities Research," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    4. George S. Atsalakis & Ioanna G. Atsalaki & Constantin Zopounidis, 2018. "Forecasting the success of a new tourism service by a neuro-fuzzy technique," Post-Print hal-02879866, HAL.
    5. Xia, Jianhong (Cecilia) & Evans, Fiona H. & Spilsbury, Katrina & Ciesielski, Vic & Arrowsmith, Colin & Wright, Graeme, 2010. "Market segments based on the dominant movement patterns of tourists," Tourism Management, Elsevier, vol. 31(4), pages 464-469.
    6. Xia, Jianhong (Cecilia) & Zeephongsekul, Panlop & Arrowsmith, Colin, 2009. "Modelling spatio-temporal movement of tourists using finite Markov chains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1544-1553.
    7. Miltiadis D. Lytras & Anna Visvizi & Akila Sarirete, 2019. "Clustering Smart City Services: Perceptions, Expectations, Responses," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    8. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    9. Miltiadis D. Lytras & Vijay Raghavan & Ernesto Damiani, 2017. "Big Data and Data Analytics Research: From Metaphors to Value Space for Collective Wisdom in Human Decision Making and Smart Machines," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 13(1), pages 1-10, January.
    10. Bartosz Hawelka & Izabela Sitko & Pavlos Kazakopoulos & Euro Beinat, 2017. "Collective Prediction of Individual Mobility Traces for Users with Short Data History," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-14, January.
    11. Xia, Jianhong (Cecilia) & Zeephongsekul, Panlop & Packer, David, 2011. "Spatial and temporal modelling of tourist movements using Semi-Markov processes," Tourism Management, Elsevier, vol. 32(4), pages 844-851.
    12. De Cantis, Stefano & Ferrante, Mauro & Kahani, Alon & Shoval, Noam, 2016. "Cruise passengers' behavior at the destination: Investigation using GPS technology," Tourism Management, Elsevier, vol. 52(C), pages 133-150.
    13. Atsalakis, George S. & Atsalaki, Ioanna G. & Zopounidis, Constantin, 2018. "Forecasting the success of a new tourism service by a neuro-fuzzy technique," European Journal of Operational Research, Elsevier, vol. 268(2), pages 716-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miltiadis D. Lytras & Anna Visvizi, 2021. "Artificial Intelligence and Cognitive Computing: Methods, Technologies, Systems, Applications and Policy Making," Sustainability, MDPI, vol. 13(7), pages 1-3, March.
    2. Vitor Rodrigues & Celeste Eusébio & Zélia Breda, 2023. "Enhancing sustainable development through tourism digitalisation: a systematic literature review," Information Technology & Tourism, Springer, vol. 25(1), pages 13-45, March.
    3. Alessandro Crivellari & Euro Beinat, 2020. "Forecasting Spatially-Distributed Urban Traffic Volumes via Multi-Target LSTM-Based Neural Network Regressor," Mathematics, MDPI, vol. 8(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    2. Angela Chantre-Astaiza & Laura Fuentes-Moraleda & Ana Muñoz-Mazón & Gustavo Ramirez-Gonzalez, 2019. "Science Mapping of Tourist Mobility 1980–2019. Technological Advancements in the Collection of the Data for Tourist Traceability," Sustainability, MDPI, vol. 11(17), pages 1-32, August.
    3. Ana Muñoz-Mazón & Laura Fuentes-Moraleda & Angela Chantre-Astaiza & Marlon-Felipe Burbano-Fernandez, 2019. "The Study of Tourist Movements in Tourist Historic Cities: A Comparative Analysis of the Applicability of Four Different Tools," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    4. Hugo Padrón-Ávila & Raúl Hernández-Martín, 2019. "Preventing Overtourism by Identifying the Determinants of Tourists’ Choice of Attractions," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    5. Yanfang Zhang & Mushang Lee, 2019. "A Hybrid Model for Addressing the Relationship between Financial Performance and Sustainable Development," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    6. Vu, Huy Quan & Li, Gang & Law, Rob & Ye, Ben Haobin, 2015. "Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos," Tourism Management, Elsevier, vol. 46(C), pages 222-232.
    7. Miltiadis D. Lytras & Anna Visvizi & Akila Sarirete, 2019. "Clustering Smart City Services: Perceptions, Expectations, Responses," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    8. Sunmin Lee & Yunjung Hyun & Moung-Jin Lee, 2019. "Groundwater Potential Mapping Using Data Mining Models of Big Data Analysis in Goyang-si, South Korea," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    9. Patricia Ordóñez de Pablos & Miltiadis Lytras, 2018. "Knowledge Management, Innovation and Big Data: Implications for Sustainability, Policy Making and Competitiveness," Sustainability, MDPI, vol. 10(6), pages 1-7, June.
    10. Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
    11. Qian, Chen & Li, Weifeng & Duan, Zhengyu & Yang, Dongyuan & Ran, Bin, 2021. "Using mobile phone data to determine spatial correlations between tourism facilities," Journal of Transport Geography, Elsevier, vol. 92(C).
    12. Abdul Aziz Bin Karia, 2021. "Are there any turning points for external debt in Malaysia? Case of adaptive neuro-fuzzy inference systems model," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-16, December.
    13. Kimitaka Asatani & Fujio Toriumi & Junichiro Mori & Masanao Ochi & Ichiro Sakata, 2018. "Detecting interpersonal relationships in large-scale railway trip data," Journal of Computational Social Science, Springer, vol. 1(2), pages 313-326, September.
    14. Anna Visvizi & Shahira Assem Abdel-Razek & Roman Wosiek & Radosław Malik, 2021. "Conceptualizing Walking and Walkability in the Smart City through a Model Composite w 2 Smart City Utility Index," Energies, MDPI, vol. 14(23), pages 1-20, December.
    15. Koun Sugimoto & Kei Ota & Shohei Suzuki, 2019. "Visitor Mobility and Spatial Structure in a Local Urban Tourism Destination: GPS Tracking and Network analysis," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    16. Xia, Jianhong (Cecilia) & Zeephongsekul, Panlop & Packer, David, 2011. "Spatial and temporal modelling of tourist movements using Semi-Markov processes," Tourism Management, Elsevier, vol. 32(4), pages 844-851.
    17. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    18. Ibrahim Mutambik, 2023. "The Global Whitewashing of Smart Cities: Citizens’ Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    19. De Cantis, Stefano & Ferrante, Mauro & Kahani, Alon & Shoval, Noam, 2016. "Cruise passengers' behavior at the destination: Investigation using GPS technology," Tourism Management, Elsevier, vol. 52(C), pages 133-150.
    20. Tu Peng & Xu Yang & Zi Xu & Yu Liang, 2020. "Constructing an Environmental Friendly Low-Carbon-Emission Intelligent Transportation System Based on Big Data and Machine Learning Methods," Sustainability, MDPI, vol. 12(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:1:p:349-:d:304175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.