IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6603-d399321.html
   My bibliography  Save this article

Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China

Author

Listed:
  • Li Ma

    (Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Key Laboratory of Disaster Monitoring and Mechanism Simulating of Shaanxi Province, Baoji University of Arts and Sciences, Baoji 721013, China)

  • Ming’an Shao

    (Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

  • Tongchuan Li

    (State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China)

Abstract

Earthworms have an important influence on the terrestrial ecological environment. This study assesses the effect of different earthworm densities on soil water content (SWC) and evaporation in a laboratory experiment. Four earthworm densities (0 no-earthworm, control [C]; 207 earthworms m −2 , low density [LDE]; 345 earthworms m −2 , medium density [MDE]; and 690 earthworms m −2 , high density [HDE]) are tested in soil columns. Results show that cumulative evaporation occurs in the decreasing order of densities: C (98.6 mm) > LDE (115.8 mm) > MDE (118.4 mm) > HDE (124.6 mm). Compared with the control, earthworm activity decreases cumulative soil evaporation by 5.0–20.9%, increases soil temperature to 0.46 °C–0.63 °C at 8:00, and decreases soil temperature to 0.21 °C–0.52 °C at 14:00 on the soil surface. Temperature fluctuations reduce with increasing earthworm densities. A negative correlation is found between cumulative soil evaporation and earthworm density ( R 2 = 0.969, p < 0.001). Earthworms significantly ( p < 0.05) decrease the surface SWC loss (0–20 cm) soil layer but increase the subsoil SWC loss (60–100 cm) by adjusting the soil temperature and reducing soil water evaporation. Earthworm activities (burrows, casts…) improve the soil water holding ability by adjusting soil temperature and reducing soil water evaporation. Thus, the population quantity of earthworms may provide valuable ecosystem services in soil water and heat cycles to save water resources and realize sustainable agricultural development.

Suggested Citation

  • Li Ma & Ming’an Shao & Tongchuan Li, 2020. "Characteristics of Soil Moisture and Evaporation under the Activities of Earthworms in Typical Anthrosols in China," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6603-:d:399321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanpei Li & Mingan Shao & Jiao Wang & Tongchuan Li, 2020. "Effects of Earthworm Cast Application on Water Evaporation and Storage in Loess Soil Column Experiments," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    2. Theodore A. Evans & Tracy Z. Dawes & Philip R. Ward & Nathan Lo, 2011. "Ants and termites increase crop yield in a dry climate," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhihong Zhang & Yali Wu & Vi Khanh Truong & Dongguang Zhang, 2021. "Earthworm ( Eisenia fetida ) Mucus Inspired Bionic Fertilizer to Stimulate Maize ( Zea mays L.) Growth," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    2. Long Kang & Rui Zhao & Kening Wu & Zhe Feng & Huafu Zhao & Sicheng Zhang, 2023. "Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils," Land, MDPI, vol. 12(4), pages 1-14, March.
    3. Mohammad Ghorbani & Elnaz Amirahmadi & Reinhard W. Neugschwandtner & Petr Konvalina & Marek Kopecký & Jan Moudrý & Kristýna Perná & Yves Theoneste Murindangabo, 2022. "The Impact of Pyrolysis Temperature on Biochar Properties and Its Effects on Soil Hydrological Properties," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihong Zhang & Yali Wu & Vi Khanh Truong & Dongguang Zhang, 2021. "Earthworm ( Eisenia fetida ) Mucus Inspired Bionic Fertilizer to Stimulate Maize ( Zea mays L.) Growth," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    2. Steven J. Fonte & Marian Hsieh & Nathaniel D. Mueller, 2023. "Earthworms contribute significantly to global food production," Nature Communications, Nature, vol. 14(1), pages 1-5, December.
    3. Fátima Gonçalves & Cristina Carlos & Luís Crespo & Vera Zina & Amália Oliveira & Juliana Salvação & José Alberto Pereira & Laura Torres, 2021. "Soil Arthropods in the Douro Demarcated Region Vineyards: General Characteristics and Ecosystem Services Provided," Sustainability, MDPI, vol. 13(14), pages 1-35, July.
    4. Kafula Chisanga & Ernest Mbega & Patrick Alois Ndakidemi, 2019. "Socio-Economic Factors for Anthill Soil Utilization by Smallholder Farmers in Zambia," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    5. Thomas W. Culliney, 2013. "Role of Arthropods in Maintaining Soil Fertility," Agriculture, MDPI, vol. 3(4), pages 1-31, September.
    6. Qian Tang & Jiping Li & Tao Tang & Pengcheng Liao & Danmei Wang, 2022. "Construction of a Forest Ecological Network Based on the Forest Ecological Suitability Index and the Morphological Spatial Pattern Method: A Case Study of Jindong Forest Farm in Hunan Province," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    7. Ravjit Khangura & David Ferris & Cameron Wagg & Jamie Bowyer, 2023. "Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health," Sustainability, MDPI, vol. 15(3), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6603-:d:399321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.