IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p4928-d372550.html
   My bibliography  Save this article

Revised SEDD (RSEDD) Model for Sediment Delivery Processes at the Basin Scale

Author

Listed:
  • Walter Chen

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Kent Thomas

    (Department of Civil Engineering, National Taipei University of Technology, Taipei 10608, Taiwan)

Abstract

Sediment transport to river channels in a basin is of great significance for a variety of reasons ranging from soil preservation to siltation prevention of reservoirs. Among the commonly used models of sediment transport, the SEdiment Delivery Distributed model (SEDD) uses an exponential function to model the likelihood of eroded soils reaching the rivers and denotes the probability as the Sediment Delivery Ratio of morphological unit i ( SDR i ). The use of probability to model SDR i in SEDD led us to examine the model and check for its statistical validity. As a result, we found that the SEDD model had several false assertions and needs to be revised to correct for the discrepancies with the statistical properties of the exponential distributions. The results of our study are presented here. We propose an alternative model, the Revised SEDD (RSEDD) model, to better estimate SDR i . We also show how to calibrate the model parameters and examine an example watershed to see if the travel time of sediments follows an exponential distribution. Finally, we reviewed studies citing the SEDD model to explore if they would be impacted by switching to the proposed RSEDD model.

Suggested Citation

  • Walter Chen & Kent Thomas, 2020. "Revised SEDD (RSEDD) Model for Sediment Delivery Processes at the Basin Scale," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4928-:d:372550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/4928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/4928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rabin Bhattarai & Dushmata Dutta, 2007. "Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(10), pages 1635-1647, October.
    2. Lulseged Tamene & Quang Le & Paul Vlek, 2014. "A Landscape Planning and Management Tool for Land and Water Resources Management: An Example Application in Northern Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 407-424, January.
    3. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    4. Valter S. Marques & Marcos B. Ceddia & Mauro A. H. Antunes & Daniel F. Carvalho & Jamil A. A. Anache & Dulce B. B. Rodrigues & Paulo Tarso S. Oliveira, 2019. "USLE K-Factor Method Selection for a Tropical Catchment," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    5. Ying Xu & Haiping Tang & Bojie Wang & Jiao Chen, 2017. "Effects of landscape patterns on soil erosion processes in a mountain–basin system in the North China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1567-1585, July.
    6. Liangang Chen & Xin Qian & Yong Shi, 2011. "Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3445-3463, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    2. E. Molina-Navarro & S. Martínez-Pérez & A. Sastre-Merlín & R. Bienes-Allas, 2014. "Catchment Erosion and Sediment Delivery in a Limno-Reservoir Basin Using a Simple Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2129-2143, June.
    3. R. Jaiswal & Narayan Ghosh & A. Lohani & T. Thomas, 2015. "Fuzzy AHP Based Multi Crteria Decision Support for Watershed Prioritization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4205-4227, September.
    4. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    5. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    6. V. Prasannakumar & H. Vijith & N. Geetha & R. Shiny, 2011. "Regional Scale Erosion Assessment of a Sub-tropical Highland Segment in the Western Ghats of Kerala, South India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3715-3727, November.
    7. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    8. Guoqiang Wang & Prasantha Hapuarachchi & Hiroshi Ishidaira & Anthony Kiem & Kuniyoshi Takeuchi, 2009. "Estimation of Soil Erosion and Sediment Yield During Individual Rainstorms at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1447-1465, June.
    9. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    10. Bojie Wang & Haiping Tang & Qin Zhang & Fengqi Cui, 2020. "Exploring Connections among Ecosystem Services Supply, Demand and Human Well-Being in a Mountain-Basin System, China," IJERPH, MDPI, vol. 17(15), pages 1-15, July.
    11. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    12. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    13. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    14. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    15. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    16. A. Jasrotia & Abinash Majhi & Sunil Singh, 2009. "Water Balance Approach for Rainwater Harvesting using Remote Sensing and GIS Techniques, Jammu Himalaya, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3035-3055, November.
    17. A. Alvarado & M. Esteller & E. Quentin & J. Expósito, 2016. "Multi-Criteria Decision Analysis and GIS Approach for Prioritization of Drinking Water Utilities Protection Based on their Vulnerability to Contamination," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1549-1566, March.
    18. Md Jahangir Alam & Dushmanta Dutta, 2016. "A Sub-Catchment Based Approach for Modelling Nutrient Dynamics and Transport at a River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5455-5478, November.
    19. Wang, Bojie & Tang, Haiping & Xu, Ying, 2017. "Integrating ecosystem services and human well-being into management practices: Insights from a mountain-basin area, China," Ecosystem Services, Elsevier, vol. 27(PA), pages 58-69.
    20. Ching-Nuo Chen & Chih-Heng Tsai & Chang-Tai Tsai, 2011. "Simulation of Runoff and Suspended Sediment Transport Rate in a Basin with Multiple Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 793-816, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4928-:d:372550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.