IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6051-d282071.html
   My bibliography  Save this article

Spatial Assessment of Damage Vulnerability to Storms Based on the Analysis of Historical Damage Cost Data in the Korean Peninsula

Author

Listed:
  • Hyun Il Choi

    (Department of Civil Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea)

Abstract

According to the Intergovernmental Panel on Climate Change (IPCC) Reports, climate variability and changes increase the possibility of extreme weather events causing climate-related hazards and the risk of natural disasters. A storm is one of the most common and serious natural hazards that pose significant human and economic damage costs worldwide. The Korean Peninsula is also at persistent risk of hydro-meteorological disasters induced by rainstorms and typhoons due to geomorphological features and climate change impacts. This study has, therefore, proposed the damage vulnerability index for a spatial assessment of the damage vulnerability to storms, based on the IPCC’s vulnerability assessment concept. The damage vulnerability index is aggregated from the potential indicator for the potential damage targets, estimated by the population and major facility densities, and the risk indicator for the expected damage risk, estimated by the risk analysis for integrating both frequency and severity of human and economic damage cost records. The damage vulnerability index can assess regions vulnerable to the disaster damage induced by rainstorms, typhoons, and both, respectively, over the 231 administrative districts in the Republic of Korea. It is expected that the proposed damage vulnerability index can provide realistic and practical information on sustainable damage mitigation plans for the nationwide administrative districts against storm-induced disasters.

Suggested Citation

  • Hyun Il Choi, 2019. "Spatial Assessment of Damage Vulnerability to Storms Based on the Analysis of Historical Damage Cost Data in the Korean Peninsula," Sustainability, MDPI, vol. 11(21), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6051-:d:282071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Yu-Tsun & Lee, Ying-Chieh & Huang, Shu-Li, 2017. "Integrated spatial ecosystem model for simulating land use change and assessing vulnerability to flooding," Ecological Modelling, Elsevier, vol. 362(C), pages 87-100.
    2. Lianxiao & Takehiro Morimoto, 2019. "Spatial Analysis of Social Vulnerability to Floods Based on the MOVE Framework and Information Entropy Method: Case Study of Katsushika Ward, Tokyo," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    3. J. Birkmann & O. Cardona & M. Carreño & A. Barbat & M. Pelling & S. Schneiderbauer & S. Kienberger & M. Keiler & D. Alexander & P. Zeil & T. Welle, 2013. "Framing vulnerability, risk and societal responses: the MOVE framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 193-211, June.
    4. Paul William Kojo Yankson & Alex Barimah Owusu & George Owusu & John Boakye-Danquah & Jacob Doku Tetteh, 2017. "Assessment of coastal communities’ vulnerability to floods using indicator-based approach: a case study of Greater Accra Metropolitan Area, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 661-689, November.
    5. S. Balica & N. Wright & F. Meulen, 2012. "A flood vulnerability index for coastal cities and its use in assessing climate change impacts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 73-105, October.
    6. Md Nazirul Islam Sarker & Min Wu & G M Monirul Alam & Roger C. Shouse, 2019. "Livelihood Vulnerability of Riverine-Island Dwellers in the Face of Natural Disasters in Bangladesh," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    7. Paul William Kojo Yankson & Alex Barimah Owusu & George Owusu & John Boakye-Danquah & Jacob Doku Tetteh, 2017. "Erratum to: Assessment of coastal communities’ vulnerability to floods using indicator-based approach: a case study of Greater Accra Metropolitan Area, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 691-691, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daystar Babanawo & Precious Agbeko D. Mattah & Samuel K. M. Agblorti & Emmanuel K. Brempong & Memuna Mawusi Mattah & Denis Worlanyo Aheto, 2022. "Local Indicator-Based Flood Vulnerability Indices and Predictors of Relocation in the Ketu South Municipal Area of Ghana," Sustainability, MDPI, vol. 14(9), pages 1-26, May.
    2. Ali Jamshed & Joern Birkmann & Daniel Feldmeyer & Irfan Ahmad Rana, 2020. "A Conceptual Framework to Understand the Dynamics of Rural–Urban Linkages for Rural Flood Vulnerability," Sustainability, MDPI, vol. 12(7), pages 1-25, April.
    3. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    4. Md. Nawrose Fatemi & Seth Asare Okyere & Stephen Kofi Diko & Michihiro Kita & Motoki Shimoda & Shigeki Matsubara, 2020. "Physical Vulnerability and Local Responses to Flood Damage in Peri-Urban Areas of Dhaka, Bangladesh," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    5. Kerstin Krellenberg & Juliane Welz, 2017. "Assessing Urban Vulnerability in the Context of Flood and Heat Hazard: Pathways and Challenges for Indicator-Based Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 132(2), pages 709-731, June.
    6. Sasenarine Tomby & Jing Zhang, 2019. "Vulnerability assessment of Guyanese sugar to floods," Climatic Change, Springer, vol. 154(1), pages 179-193, May.
    7. Linjun Lu & Qing-Chang Lu & ABM Sertajur Rahman, 2015. "Residence and Job Location Change Choice Behavior under Flooding and Cyclone Impacts in Bangladesh," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    8. Neiler Medina & Yared Abayneh Abebe & Arlex Sanchez & Zoran Vojinovic, 2020. "Assessing Socioeconomic Vulnerability after a Hurricane: A Combined Use of an Index-Based approach and Principal Components Analysis," Sustainability, MDPI, vol. 12(4), pages 1-31, February.
    9. Krellenberg, Kerstin & Link, Felipe & Welz, Juliane & Barth, Katrin & Harris, Jordan & Irarrázaval, Felipe & Valenzuela, Felipe, 2015. "Approaching urban vulnerability to climate change induced risks in socio-environmentally fragmented areas: The case of Santiago de Chile," UFZ Reports 02/2015, Helmholtz Centre for Environmental Research (UFZ).
    10. Matthias Garschagen & Patricia Romero-Lankao, 2015. "Exploring the relationships between urbanization trends and climate change vulnerability," Climatic Change, Springer, vol. 133(1), pages 37-52, November.
    11. Fabiana Navia Miranda & Tiago Miguel Ferreira, 2019. "A simplified approach for flood vulnerability assessment of historic sites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 713-730, March.
    12. Choirunnisa Audi Karina & Giyarsih Sri Rum, 2018. "The socioeconomic vulnerability of coastal communities to abrasion in Samas, Bantul Regency, Indonesia," Quaestiones Geographicae, Sciendo, vol. 37(3), pages 115-126, September.
    13. Linda Sorg & Neiler Medina & Daniel Feldmeyer & Arlex Sanchez & Zoran Vojinovic & Jörn Birkmann & Alessandra Marchese, 2018. "Capturing the multifaceted phenomena of socioeconomic vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 257-282, May.
    14. Sarah Percival & Richard Teeuw, 2019. "A methodology for urban micro-scale coastal flood vulnerability and risk assessment and mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 355-377, May.
    15. Chloe S. Fleming & Seann D. Regan & Amy Freitag & Heidi Burkart, 2023. "Indicators and participatory processes: a framework for assessing integrated climate vulnerability and risk as applied in Los Angeles County, California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2069-2095, February.
    16. Muhammad Nazeer & Hans-Rudolf Bork, 2021. "A local scale flood vulnerability assessment in the flood-prone area of Khyber Pakhtunkhwa, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 755-781, January.
    17. Jhantu Dey & Sayani Mazumder, 2023. "Development of an integrated coastal vulnerability index and its application to the low-lying Mandarmani–Dadanpatrabar coastal sector, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3243-3273, April.
    18. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    19. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    20. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6051-:d:282071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.