IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i3p71-d157549.html
   My bibliography  Save this article

Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions

Author

Listed:
  • Guojun Gan

    (Department of Mathematics, University of Connecticut, Storrs, CT 06269-1009, USA)

Abstract

A variable annuity is a popular life insurance product that comes with financial guarantees. Using Monte Carlo simulation to value a large variable annuity portfolio is extremely time-consuming. Metamodeling approaches have been proposed in the literature to speed up the valuation process. In metamodeling, a metamodel is first fitted to a small number of variable annuity contracts and then used to predict the values of all other contracts. However, metamodels that have been investigated in the literature are sophisticated predictive models. In this paper, we investigate the use of linear regression models with interaction effects for the valuation of large variable annuity portfolios. Our numerical results show that linear regression models with interactions are able to produce accurate predictions and can be useful additions to the toolbox of metamodels that insurance companies can use to speed up the valuation of large VA portfolios.

Suggested Citation

  • Guojun Gan, 2018. "Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions," Risks, MDPI, vol. 6(3), pages 1-19, July.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:71-:d:157549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/3/71/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/3/71/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    2. Xu, Wei & Chen, Yuehuan & Coleman, Conrad & Coleman, Thomas F., 2018. "Moment matching machine learning methods for risk management of large variable annuity portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 1-20.
    3. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    4. Guojun Gan & X. Sheldon Lin, 2017. "Efficient Greek Calculation of Variable Annuity Portfolios for Dynamic Hedging: A Two-Level Metamodeling Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(2), pages 161-177, April.
    5. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    6. Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.
    7. Boyle, Phelim P. & Hardy, Mary R., 1997. "Reserving for maturity guarantees: Two approaches," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 113-127, November.
    8. Guojun Gan & Emiliano A. Valdez, 2018. "Regression Modeling for the Valuation of Large Variable Annuity Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(1), pages 40-54, January.
    9. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    10. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    11. Gan Guojun & Valdez Emiliano A., 2016. "An empirical comparison of some experimental designs for the valuation of large variable annuity portfolios," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    2. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    3. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guojun Gan & Emiliano A. Valdez, 2018. "Nested Stochastic Valuation of Large Variable Annuity Portfolios: Monte Carlo Simulation and Synthetic Datasets," Data, MDPI, vol. 3(3), pages 1-21, September.
    2. Daniel Doyle & Chris Groendyke, 2018. "Using Neural Networks to Price and Hedge Variable Annuity Guarantees," Risks, MDPI, vol. 7(1), pages 1-19, December.
    3. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    4. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    5. Gan Guojun & Valdez Emiliano A., 2017. "Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets," Dependence Modeling, De Gruyter, vol. 5(1), pages 354-374, December.
    6. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    7. Gan, Guojun & Valdez, Emiliano A., 2017. "Modeling partial Greeks of variable annuities with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 118-134.
    8. Huang, Yiming & Mamon, Rogemar & Xiong, Heng, 2022. "Valuing guaranteed minimum accumulation benefits by a change of numéraire approach," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 1-26.
    9. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "Efficient Valuation of SCR via a Neural Network Approach," Papers 1610.01946, arXiv.org.
    10. Li, Yuying & Forsyth, Peter A., 2019. "A data-driven neural network approach to optimal asset allocation for target based defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 189-204.
    11. Wang, Gu & Zou, Bin, 2021. "Optimal fee structure of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 587-601.
    12. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    13. Massimo Costabile & Fabio Viviano, 2021. "Modeling the Future Value Distribution of a Life Insurance Portfolio," Risks, MDPI, vol. 9(10), pages 1-17, October.
    14. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2021. "Gaussian process regression for pricing variable annuities with stochastic volatility and interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 57-72, June.
    15. Seyed Amir Hejazi & Kenneth R. Jackson & Guojun Gan, 2017. "A Spatial Interpolation Framework for Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1701.04134, arXiv.org.
    16. Shuang Yin & Guojun Gan & Emiliano A. Valdez & Jeyaraj Vadiveloo, 2021. "Applications of Clustering with Mixed Type Data in Life Insurance," Risks, MDPI, vol. 9(3), pages 1-19, March.
    17. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    18. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    19. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.
    20. Alexandre Carbonneau, 2020. "Deep Hedging of Long-Term Financial Derivatives," Papers 2007.15128, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:71-:d:157549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.