IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p957-d543030.html
   My bibliography  Save this article

Measure of Similarity between GMMs by Embedding of the Parameter Space That Preserves KL Divergence

Author

Listed:
  • Branislav Popović

    (Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia)

  • Lenka Cepova

    (Department of Machining, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Assembly and Engineering Metrology, 17. listopadu 2172/15, 708 00 Ostrava Poruba, Czech Republic)

  • Robert Cep

    (Department of Machining, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Assembly and Engineering Metrology, 17. listopadu 2172/15, 708 00 Ostrava Poruba, Czech Republic)

  • Marko Janev

    (Institute of Mathematics, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia)

  • Lidija Krstanović

    (Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad, Serbia)

Abstract

In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper.

Suggested Citation

  • Branislav Popović & Lenka Cepova & Robert Cep & Marko Janev & Lidija Krstanović, 2021. "Measure of Similarity between GMMs by Embedding of the Parameter Space That Preserves KL Divergence," Mathematics, MDPI, vol. 9(9), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:957-:d:543030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lovric, Miroslav & Min-Oo, Maung & Ruh, Ernst A., 2000. "Multivariate Normal Distributions Parametrized as a Riemannian Symmetric Space," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 36-48, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Branislav Popović & Marko Janev & Lidija Krstanović & Nikola Simić & Vlado Delić, 2022. "Measure of Similarity between GMMs Based on Geometry-Aware Dimensionality Reduction," Mathematics, MDPI, vol. 11(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Micchelli, Charles & Noakes, Lyle, 2005. "Rao distances," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 97-115, January.
    2. Le Brigant, Alice & Puechmorel, Stéphane, 2019. "Quantization and clustering on Riemannian manifolds with an application to air traffic analysis," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 685-703.
    3. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    4. Andai, Attila, 2009. "On the geometry of generalized Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 777-793, April.
    5. Lidija Krstanović & Branislav Popović & Marko Janev & Branko Brkljač, 2023. "Feature Map Regularized CycleGAN for Domain Transfer," Mathematics, MDPI, vol. 11(2), pages 1-21, January.
    6. Branislav Popović & Marko Janev & Lidija Krstanović & Nikola Simić & Vlado Delić, 2022. "Measure of Similarity between GMMs Based on Geometry-Aware Dimensionality Reduction," Mathematics, MDPI, vol. 11(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:957-:d:543030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.