IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i8p913-d539769.html
   My bibliography  Save this article

Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units

Author

Listed:
  • Juan Eloy Ruiz-Castro

    (Department of Statistics and O.R., Math Institute (IMAG), University of Granada, 18071 Granada, Spain)

Abstract

A complex multi-state redundant system with preventive maintenance subject to multiple events is considered. The online unit can undergo several types of failure: both internal and those provoked by external shocks. Multiple degradation levels are assumed as both internal and external. Degradation levels are observed by random inspections and, if they are major, the unit goes to a repair facility where preventive maintenance is carried out. This repair facility is composed of a single repairperson governed by a multiple vacation policy. This policy is set up according to the operational number of units. Two types of task can be performed by the repairperson, corrective repair and preventive maintenance. The times embedded in the system are phase type distributed and the model is built by using Markovian Arrival Processes with marked arrivals. Multiple performance measures besides the transient and stationary distribution are worked out through matrix-analytic methods. This methodology enables us to express the main results and the global development in a matrix-algorithmic form. To optimize the model, costs and rewards are included. A numerical example shows the versatility of the model.

Suggested Citation

  • Juan Eloy Ruiz-Castro, 2021. "Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units," Mathematics, MDPI, vol. 9(8), pages 1-29, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:913-:d:539769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/8/913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/8/913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.
    2. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Juan Eloy Ruiz-Castro, 2018. "A D-MMAP to Model a Complex Multi-state System with Loss of Units," Springer Series in Reliability Engineering, in: Anatoly Lisnianski & Ilia Frenkel & Alex Karagrigoriou (ed.), Recent Advances in Multi-state Systems Reliability, pages 39-58, Springer.
    4. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimizing preventive replacement schedule in standby systems with time consuming task transfers," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2017. "On preventive maintenance of systems with lifetimes dependent on a random shock process," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 90-97.
    6. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2017. "Redundancy optimization for series-parallel phased mission systems exposed to random shocks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 554-560.
    7. Q. Zhai & R. Peng & L. Xing & J. Yang, 2015. "Reliability of demand‐based warm standby systems subject to fault level coverage," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(3), pages 380-393, May.
    8. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    9. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    10. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    11. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Optimizing Costs in a Reliability System under Markovian Arrival of Failures and Reposition by K -Policy Inspection," Mathematics, MDPI, vol. 10(11), pages 1-21, June.
    2. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Ruiz-Castro, Juan E. & Acal, Christian & Aguilera, Ana M. & Aguilera-Morillo, M. Carmen & Roldán, Juan B., 2021. "Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 71-79.
    4. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    5. Sakurahara, Tatsuya & O'Shea, Nicholas & Cheng, Wen-Chi & Zhang, Sai & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "Integrating renewal process modeling with Probabilistic Physics-of-Failure: Application to Loss of Coolant Accident (LOCA) frequency estimations in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Hashemi, M. & Asadi, M. & Zarezadeh, S., 2020. "Optimal maintenance policies for coherent systems with multi-type components," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    9. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    10. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    11. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    12. Qingan Qiu & Lirong Cui & Dejing Kong, 2019. "Availability and maintenance modeling for a two-component system with dependent failures over a finite time horizon," Journal of Risk and Reliability, , vol. 233(2), pages 200-210, April.
    13. Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    14. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2022. "Replacement Policy for Heterogeneous Items Subject to Gamma Degradation Processes," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1323-1340, September.
    16. Wang, Guanjun & Peng, Rui & Xing, Liudong, 2018. "Reliability evaluation of unrepairable k-out-of-n: G systems with phased-mission requirements based on record values," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 191-197.
    17. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    18. Zarezadeh, Somayeh & Ashrafi, Somayeh, 2019. "On preventive maintenance of networks with components subject to external shocks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Zhang, Zihan & Yang, Li, 2020. "Postponed maintenance scheduling integrating state variation and environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:913-:d:539769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.