IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3281-d704575.html
   My bibliography  Save this article

Analysis and Synchronization of a New Hyperchaotic System with Exponential Term

Author

Listed:
  • Shunjie Li

    (School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Yawen Wu

    (School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Xuebing Zhang

    (School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract

In this paper, a new four-dimensional hyperchaotic system with an exponential term is presented. The basic dynamical properties and chaotic behavior of the new attractor are analyzed. It can be shown that this system possesses either a line of equilibria or a single one. The existence of hyperchaos is confirmed by its Lyapunov exponents. Moreover, the synchronization problem for the hyperchaotic system is studied. Based on the Lyapunov stability theory, an adaptive control law with two inputs is proposed to achieve the global synchronization. Numerical simulations are given to validate the correctness of the proposed control law.

Suggested Citation

  • Shunjie Li & Yawen Wu & Xuebing Zhang, 2021. "Analysis and Synchronization of a New Hyperchaotic System with Exponential Term," Mathematics, MDPI, vol. 9(24), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3281-:d:704575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xingyuan & Wang, Mingjun, 2008. "A hyperchaos generated from Lorenz system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3751-3758.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ming & Wang, Mengdie & Fan, Haiju & An, Kang & Liu, Guoqi, 2022. "A novel plaintext-related chaotic image encryption scheme with no additional plaintext information," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Xiaofei Zhou & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Hyperchaotic System Using Barycentric Lagrange Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    3. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. María Pilar Mareca & Borja Bordel, 2017. "Improving the Complexity of the Lorenz Dynamics," Complexity, Hindawi, vol. 2017, pages 1-16, January.
    5. Peng, Xuenan & Zeng, Yicheng, 2020. "Image encryption application in a system for compounding self-excited and hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Zhou, Shuang & Wang, Xingyuan, 2020. "Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Fuchen Zhang & Min Xiao, 2019. "Complex Dynamical Behaviors of Lorenz-Stenflo Equations," Mathematics, MDPI, vol. 7(6), pages 1-9, June.
    8. Fan, Chunlei & Ding, Qun, 2022. "A universal method for constructing non-degenerate hyperchaotic systems with any desired number of positive Lyapunov exponents," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Fuchen Zhang & Rui Chen & Xiusu Chen, 2017. "Analysis of a Generalized Lorenz–Stenflo Equation," Complexity, Hindawi, vol. 2017, pages 1-6, December.
    10. Zhang, Fuchen & Shu, Yonglu, 2015. "Global dynamics for the simplified Lorenz system model," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 53-60.
    11. Liu, Hongjun & Zhang, Yingqian & Kadir, Abdurahman & Xu, Yanqiu, 2019. "Image encryption using complex hyper chaotic system by injecting impulse into parameters," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 83-93.
    12. Ojoniyi, Olurotimi S. & Njah, Abdulahi N., 2016. "A 5D hyperchaotic Sprott B system with coexisting hidden attractors," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 172-181.
    13. Yu, Mengyao & Sun, Kehui & Liu, Wenhao & He, Shaobo, 2018. "A hyperchaotic map with grid sinusoidal cavity," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 107-117.
    14. Fuchen Zhang, 2019. "Analysis of a Lorenz-Like Chaotic System by Lyapunov Functions," Complexity, Hindawi, vol. 2019, pages 1-6, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3281-:d:704575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.