IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1147-d290327.html
   My bibliography  Save this article

Robust Portfolio Optimization in an Illiquid Market in Discrete-Time

Author

Listed:
  • Nikolay Andreev

    (Financial Engineering and Risk Management laboratory, National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, 101000 Moscow, Russia)

Abstract

We present a robust dynamic programming approach to the general portfolio selection problem in the presence of transaction costs and trading limits. We formulate the problem as a dynamic infinite game against nature and obtain the corresponding Bellman-Isaacs equation. Under several additional assumptions, we get an alternative form of the equation, which is more feasible for a numerical solution. The framework covers a wide range of control problems, such as the estimation of the portfolio liquidation value, or portfolio selection in an adverse market. The results can be used in the presence of model errors, non-linear transaction costs and a price impact.

Suggested Citation

  • Nikolay Andreev, 2019. "Robust Portfolio Optimization in an Illiquid Market in Discrete-Time," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1147-:d:290327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vathana Ly Vath & Mohamed Mnif & Huyên Pham, 2007. "A model of optimal portfolio selection under liquidity risk and price impact," Finance and Stochastics, Springer, vol. 11(1), pages 51-90, January.
    2. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    3. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
    4. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    5. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    6. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    7. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    8. Garud N. Iyengar, 2005. "Robust Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 257-280, May.
    9. Alexander Schied & Torsten Schöneborn, 2009. "Risk aversion and the dynamics of optimal liquidation strategies in illiquid markets," Finance and Stochastics, Springer, vol. 13(2), pages 181-204, April.
    10. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    11. Deng, Xiao-Tie & Li, Zhong-Fei & Wang, Shou-Yang, 2005. "A minimax portfolio selection strategy with equilibrium," European Journal of Operational Research, Elsevier, vol. 166(1), pages 278-292, October.
    12. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    13. Gerhard Winkler, 1988. "Extreme Points of Moment Sets," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 581-587, November.
    14. Philippe Jorion, 2000. "Risk management lessons from Long‐Term Capital Management," European Financial Management, European Financial Management Association, vol. 6(3), pages 277-300, September.
    15. Denis Talay & Ziyu Zheng, 2002. "Worst case model risk management," Finance and Stochastics, Springer, vol. 6(4), pages 517-537.
    16. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    17. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    18. Magill, Michael J. P. & Constantinides, George M., 1976. "Portfolio selection with transactions costs," Journal of Economic Theory, Elsevier, vol. 13(2), pages 245-263, October.
    19. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolay A. Andreev, 2015. "Worst-Case Approach To Strategic Optimal Portfolio Selection Under Transaction Costs And Trading Limits," HSE Working papers WP BRP 45/FE/2015, National Research University Higher School of Economics.
    2. Felix J. Lopez-Iturriaga & Domingo Javier Santana-Martin, 2015. "Do Shareholder Coalitions Modify Dominant Owner's Control? The Impact On Dividend Policy," HSE Working papers WP BRP 41/FE/2015, National Research University Higher School of Economics.
    3. Ren Liu & Johannes Muhle-Karbe & Marko H. Weber, 2014. "Rebalancing with Linear and Quadratic Costs," Papers 1402.5306, arXiv.org, revised Sep 2017.
    4. Nikolay A. Andreev, 2014. "On Linearity Of Transaction Costs In Order Driven Market," HSE Working papers WP BRP 38/FE/2014, National Research University Higher School of Economics.
    5. Phillip Monin, 2014. "Hedging Market Risk in Optimal Liquidation," Working Papers 14-08, Office of Financial Research, US Department of the Treasury.
    6. Mauricio Junca, 2011. "Stochastic impulse control on optimal execution with price impact and transaction cost," Papers 1103.3482, arXiv.org, revised Jan 2013.
    7. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    8. Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
    9. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    10. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    11. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    12. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," Papers 1502.04521, arXiv.org.
    13. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    14. Jan Kallsen & Johannes Muhle-Karbe, 2014. "High-Resilience Limits of Block-Shaped Order Books," Papers 1409.7269, arXiv.org.
    15. Albert Altarovici & Max Reppen & H. Mete Soner, 2016. "Optimal Consumption and Investment with Fixed and Proportional Transaction Costs," Papers 1610.03958, arXiv.org.
    16. Masashi Ieda, 2015. "A dynamic optimal execution strategy under stochastic price recovery," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-24, December.
    17. Bin Zou & Rudi Zagst, 2015. "Optimal Investment with Transaction Costs under Cumulative Prospect Theory in Discrete Time," Papers 1511.04768, arXiv.org, revised Nov 2016.
    18. Forsyth, P.A. & Kennedy, J.S. & Tse, S.T. & Windcliff, H., 2012. "Optimal trade execution: A mean quadratic variation approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1971-1991.
    19. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. repec:dau:papers:123456789/7391 is not listed on IDEAS
    21. Peter Kratz & Torsten Schoneborn, 2012. "Portfolio liquidation in dark pools in continuous time," Papers 1201.6130, arXiv.org, revised Aug 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1147-:d:290327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.