IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i2p17-d129236.html
   My bibliography  Save this article

Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches

Author

Listed:
  • Guoxing Lin

    (Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA)

Abstract

Pulsed-field gradient (PFG) diffusion experiments can be used to measure anomalous diffusion in many polymer or biological systems. However, it is still complicated to analyze PFG anomalous diffusion, particularly the finite gradient pulse width (FGPW) effect. In practical applications, the FGPW effect may not be neglected, such as in clinical diffusion magnetic resonance imaging (MRI). Here, two significantly different methods are proposed to analyze PFG anomalous diffusion: the effective phase-shift diffusion equation (EPSDE) method and a method based on observing the signal intensity at the origin. The EPSDE method describes the phase evolution in virtual phase space, while the method to observe the signal intensity at the origin describes the magnetization evolution in real space. However, these two approaches give the same general PFG signal attenuation including the FGPW effect, which can be numerically evaluated by a direct integration method. The direct integration method is fast and without overflow. It is a convenient numerical evaluation method for Mittag-Leffler function-type PFG signal attenuation. The methods here provide a clear view of spin evolution under a field gradient, and their results will help the analysis of PFG anomalous diffusion.

Suggested Citation

  • Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:2:p:17-:d:129236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/2/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/2/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Guoxing, 2018. "General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 86-100.
    2. Balescu, R., 2007. "V-Langevin equations, continuous time random walks and fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 62-80.
    3. Farida Grinberg & Ezequiel Farrher & Luisa Ciobanu & Françoise Geffroy & Denis Le Bihan & N Jon Shah, 2014. "Non-Gaussian Diffusion Imaging for Enhanced Contrast of Brain Tissue Affected by Ischemic Stroke," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-15, February.
    4. Guido Germano & Mauro Politi & Enrico Scalas & Ren'e L. Schilling, 2008. "Stochastic calculus for uncoupled continuous-time random walks," Papers 0802.3769, arXiv.org, revised Jan 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard L. Magin & Hamid Karani & Shuhong Wang & Yingjie Liang, 2019. "Fractional Order Complexity Model of the Diffusion Signal Decay in MRI," Mathematics, MDPI, vol. 7(4), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    2. Frank Marten & Krasimira Tsaneva-Atanasova & Luca Giuggioli, 2012. "Bacterial Secretion and the Role of Diffusive and Subdiffusive First Passage Processes," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    3. Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
    4. Lin, Guoxing, 2018. "General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 86-100.
    5. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    6. Georgios C Manikis & Kostas Marias & Doenja M J Lambregts & Katerina Nikiforaki & Miriam M van Heeswijk & Frans C H Bakers & Regina G H Beets-Tan & Nikolaos Papanikolaou, 2017. "Diffusion weighted imaging in patients with rectal cancer: Comparison between Gaussian and non-Gaussian models," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    7. Pagnini, Gianni, 2014. "Short note on the emergence of fractional kinetics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 29-34.
    8. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    9. Zheng, Yunying & Zhao, Zhengang & Cui, Yanfen, 2019. "The discontinuous Galerkin finite element approximation of the multi-order fractional initial problems," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 257-269.
    10. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    11. Lin, Guoxing, 2017. "Analyzing signal attenuation in PFG anomalous diffusion via a modified Gaussian phase distribution approximation based on fractal derivative model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 277-288.
    12. Chen, Zhen-Qing & Kim, Kyeong-Hun & Kim, Panki, 2015. "Fractional time stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1470-1499.
    13. Dexter Cahoy, 2012. "Moment estimators for the two-parameter M-Wright distribution," Computational Statistics, Springer, vol. 27(3), pages 487-497, September.
    14. Fan Yang & Qu Pu & Xiao-Xiao Li & Dun-Gang Li, 2019. "The Truncation Regularization Method for Identifying the Initial Value on Non-Homogeneous Time-Fractional Diffusion-Wave Equations," Mathematics, MDPI, vol. 7(11), pages 1-21, October.
    15. Straka, Peter, 2018. "Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 451-463.
    16. Richard L. Magin & Ervin K. Lenzi, 2021. "Slices of the Anomalous Phase Cube Depict Regions of Sub- and Super-Diffusion in the Fractional Diffusion Equation," Mathematics, MDPI, vol. 9(13), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:2:p:17-:d:129236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.