IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i9p1292-d1382136.html
   My bibliography  Save this article

Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm

Author

Listed:
  • Hong Pan

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Jie Yang

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Yang Yu

    (China Water Northeast Survey Design and Research Co., Ltd., Changchun 130021, China)

  • Yuan Zheng

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Xiaonan Zheng

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

  • Chenyang Hang

    (School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China)

Abstract

The economic operation of hydropower stations has the potential to increase water use efficiency. However, there are some challenges, such as the fixed and unchangeable flow characteristic curve of the hydraulic turbines, and the large number of variables in optimal load distribution, which limit the progress of research. In this paper, we propose a new optimal method of the economic operation of hydropower stations based on improved Long Short-Term Memory neural network (I-LSTM) and Random Forest (RF) algorithm. Firstly, in order to accurately estimate the water consumption, the LSTM model’s hyperparameters are optimized using improved particle swarm optimization, and the I-LSTM method is proposed to fit the flow characteristic curve of the hydraulic turbines. Secondly, the Random Forest machine learning algorithm is introduced to establish a load-distribution model with its powerful feature extraction and learning ability. To improve the accuracy of the load-distribution model, we use the K-means algorithm to cluster the historical data and optimize the parameters of the Random Forest model. A Hydropower Station in China is selected for a case study. It is shown that (1) the I-LSTM method fits the operating characteristics under various working conditions and actual operating characteristics of hydraulic turbines, ensuring that they are closest to the actual operating state; (2) the I-LSTM method is compared with Support Vector Machine (SVM), Extreme Learning Machine (ELM) and Long Short-Term Memory neural network (LSTM). The prediction results of SVM have a large error, but compared with ELM and LSTM, MSE is reduced by about 46% and 38% respectively. MAE is reduced by about 25% and 21%, respectively. RMSE is reduced by about 27% and 24%, respectively; (3) the RF algorithm performs better than the traditional dynamic programming algorithm in load distribution. With the passage of time and the increase in training samples, the prediction accuracy of the Random Forest model has steadily improved, which helps to achieve optimal operation of the units, reducing their average total water consumption by 1.24%. This study provides strong support for the application of intelligent low-consumption optimization strategies in hydropower fields, which can bring higher economic benefits and resource savings to renewable energy production.

Suggested Citation

  • Hong Pan & Jie Yang & Yang Yu & Yuan Zheng & Xiaonan Zheng & Chenyang Hang, 2024. "Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1292-:d:1382136
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/9/1292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/9/1292/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1292-:d:1382136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.