IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1590-d810705.html
   My bibliography  Save this article

Operational Calculus for the General Fractional Derivatives of Arbitrary Order

Author

Listed:
  • Maryam Al-Kandari

    (Department of Mathematics, Kuwait University, Kuwait City 12037, Kuwait)

  • Latif A-M. Hanna

    (Department of Mathematics, Kuwait University, Kuwait City 12037, Kuwait)

  • Yuri Luchko

    (Department of Mathematics, Physics, and Chemistry, Berlin University of Applied Sciences and Technology, 10587 Berlin, Germany)

Abstract

In this paper, we deal with the general fractional integrals and the general fractional derivatives of arbitrary order with the kernels from a class of functions that have an integrable singularity of power function type at the origin. In particular, we introduce the sequential fractional derivatives of this type and derive an explicit formula for their projector operator. The main contribution of this paper is a construction of an operational calculus of Mikusiński type for the general fractional derivatives of arbitrary order. In particular, we present a representation of the m -fold sequential general fractional derivatives of arbitrary order as algebraic operations in the field of convolution quotients and derive some important operational relations.

Suggested Citation

  • Maryam Al-Kandari & Latif A-M. Hanna & Yuri Luchko, 2022. "Operational Calculus for the General Fractional Derivatives of Arbitrary Order," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1590-:d:810705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    2. Yuri Luchko, 2021. "General Fractional Integrals and Derivatives with the Sonine Kernels," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    3. Yuri Luchko & Masahiro Yamamoto, 2020. "The General Fractional Derivative and Related Fractional Differential Equations," Mathematics, MDPI, vol. 8(12), pages 1-20, November.
    4. Yuri Luchko, 2021. "Special Functions of Fractional Calculus in the Form of Convolution Series and Their Applications," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    2. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    3. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    2. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    3. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    4. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    6. Yuri Luchko, 2023. "Fractional Integrals and Derivatives: “True” versus “False”," Mathematics, MDPI, vol. 11(13), pages 1-2, July.
    7. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    8. Vasily E. Tarasov, 2022. "General Non-Local Continuum Mechanics: Derivation of Balance Equations," Mathematics, MDPI, vol. 10(9), pages 1-43, April.
    9. Muñoz-Vázquez, Aldo Jonathan & Martínez-Fuentes, Oscar & Fernández-Anaya, Guillermo, 2022. "Generalized PI control for robust stabilization of dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 22-35.
    10. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    11. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    12. Vasily E. Tarasov, 2022. "Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-34, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1590-:d:810705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.