IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4721-d1000916.html
   My bibliography  Save this article

Optimal Design of Water Distribution Systems Considering Topological Characteristics and Residual Chlorine Concentration

Author

Listed:
  • Mun Jin Ko

    (Department of Civil and Infrastructure Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea)

  • Young Hwan Choi

    (Department of Civil and Infrastructure Engineering, Gyeongsang National University, Jinju 52725, Republic of Korea)

Abstract

Water distribution systems (WDSs) are designed for supplying safe water under abnormal conditions. Therefore, the optimal design of WDSs should present a plan that satisfies the hydraulic constraint, pressure at the node, and flow rate of the pipe. The water quality constraint, that is, the residual chlorine standard, should be also satisfied. However, there is a problem of insufficient pressure or absence of water for the rapid increase in demand and abnormal situations caused by the destruction of pipes resulting from growing urbanization. This problem differs in node pressure and residence time, depending on the type of WDSs (i.e., loop, hybrid, and branch). Therefore, in this study, the optimal design of WDSs was determined by considering the form of the WDS and the residual chlorine concentration. To construct the layout of WDSs, the type was constructed and classified using the branch index, classification index, and hydraulic water-quality characteristics, which were analyzed accordingly. In addition, the objectives of the WDSs in terms of hydraulic (i.e., nodal pressure) and water-quality (i.e., reference values of residual chlorine concentrations) constraints were established to derive optimal designs that simultaneously stabilize and satisfy water. To stably supply water to the customer even in abnormal situations, an optimal multipurpose design was carried out by setting the sum of the surplus head and design cost as an objective function. These analyses can improve the water quality by simultaneously considering the residual chlorine concentration. They improved the hydraulic characteristics by considering only pressure in the existing design stage. In addition, by deriving an optimal design plan in terms of hydraulic quality according to topological features, we can derive an optimal design that assists the designer in decision making while improving the economic aspect and usability for the consumer.

Suggested Citation

  • Mun Jin Ko & Young Hwan Choi, 2022. "Optimal Design of Water Distribution Systems Considering Topological Characteristics and Residual Chlorine Concentration," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4721-:d:1000916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4721/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4721-:d:1000916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.