IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4384-d979115.html
   My bibliography  Save this article

Fixed/Predefined-Time Synchronization of Complex-Valued Stochastic BAM Neural Networks with Stabilizing and Destabilizing Impulse

Author

Listed:
  • Jingjing You

    (College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China)

  • Abdujelil Abdurahman

    (College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China)

  • Hayrengul Sadik

    (College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China)

Abstract

This article is mainly concerned with the fixed-time and predefined-time synchronization problem for a type of complex-valued BAM neural networks with stochastic perturbations and impulse effect. First, some previous fixed-time stability results on nonlinear impulsive systems in which stabilizing and destabilizing impulses were separately analyzed are extended to a general case in which the stabilizing and destabilizing impulses can be handled simultaneously. Additionally, using the same logic, a new predefined-time stability lemma for stochastic nonlinear systems with a general impulsive effect is obtained by using the inequality technique. Then, based on these novel results, two novel controllers are implemented to derive some simple fixed/predefined-time synchronization criteria for the considered complex-valued impulsive BAM neural networks with stochastic perturbations using the non-separation method. Finally, two numerical examples are given to demonstrate the feasibility of the obtained results.

Suggested Citation

  • Jingjing You & Abdujelil Abdurahman & Hayrengul Sadik, 2022. "Fixed/Predefined-Time Synchronization of Complex-Valued Stochastic BAM Neural Networks with Stabilizing and Destabilizing Impulse," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4384-:d:979115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4384/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rouzimaimaiti Mahemuti & Abdujelil Abdurahman, 2023. "Predefined-Time (PDT) Synchronization of Impulsive Fuzzy BAM Neural Networks with Stochastic Perturbations," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    2. Chengqiang Wang & Xiangqing Zhao & Can Wang & Zhiwei Lv, 2023. "Synchronization of Takagi–Sugeno Fuzzy Time-Delayed Stochastic Bidirectional Associative Memory Neural Networks Driven by Brownian Motion in Pre-Assigned Settling Time," Mathematics, MDPI, vol. 11(17), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Zhou, Wenjia & Hu, Yuanfa & Liu, Xiaoyang & Cao, Jinde, 2022. "Finite-time adaptive synchronization of coupled uncertain neural networks via intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Ganesan, Bhuvaneshwari & Annamalai, Manivannan, 2023. "Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Shuang Wang & Hai Zhang & Weiwei Zhang & Hongmei Zhang, 2021. "Finite-Time Projective Synchronization of Caputo Type Fractional Complex-Valued Delayed Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    6. Jun Guo & Yanchao Shi & Weihua Luo & Yanzhao Cheng & Shengye Wang, 2023. "Adaptive Global Synchronization for a Class of Quaternion-Valued Cohen-Grossberg Neural Networks with Known or Unknown Parameters," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
    7. Mao, Kun & Liu, Xiaoyang & Cao, Jinde & Hu, Yuanfa, 2022. "Finite-time bipartite synchronization of coupled neural networks with uncertain parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Bashir Ahmad & Madeaha Alghanmi & Ahmed Alsaedi & Ravi P. Agarwal, 2019. "Nonlinear Impulsive Multi-Order Caputo-Type Generalized Fractional Differential Equations with Infinite Delay," Mathematics, MDPI, vol. 7(11), pages 1-15, November.
    9. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4384-:d:979115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.