IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v5y2022i2p17-254d797919.html
   My bibliography  Save this article

Quantum Matter Overview

Author

Listed:
  • Melanie Swan

    (Computer Science, University College London, London WC1E 6BT, UK)

  • Renato P. Dos Santos

    (Physics, Lutheran University of Brazil, Canoas 92425-900, Brazil)

  • Frank Witte

    (Economics, University College London, London WC1E 6BT, UK)

Abstract

Quantum matter (novel phases of matter at zero temperature with exotic properties) is a growing field with applications in its own domain, and in providing foundational support to quantum sciences fields more generally. The ability to characterize and manipulate matter at the smallest scales continues to advance in fundamental ways. This review provides a plain-language, non-technical description of contemporary activity in quantum matter for a general science audience, and an example of these methods applied to quantum neuroscience. Quantum matter is the study of topologically governed phases of matter at absolute zero temperature that exhibit new kinds of emergent order and exotic properties related to topology and symmetry, entanglement, and electronic charge and magnetism, which may be orchestrated to create new classes of materials and computational devices (including in the areas of spintronics, valleytronics, and quantum computing). The paper is organized to discuss recent developments in quantum matter on the topics of short-range topologically protected materials (namely, topological semimetals), long-range entangled materials (quantum spin liquids and fractional quantum Hall states), and codes for characterizing and controlling quantum systems. A key finding is that a shift in the conceptualization of the field of quantum matter may be underway to expand the core focus on short-range topologically protected materials to also include geometry-based approaches and long-range entanglement as additionally important tools for the understanding, characterization, and manipulation of topological materials.

Suggested Citation

  • Melanie Swan & Renato P. Dos Santos & Frank Witte, 2022. "Quantum Matter Overview," J, MDPI, vol. 5(2), pages 1-23, April.
  • Handle: RePEc:gam:jjopen:v:5:y:2022:i:2:p:17-254:d:797919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/5/2/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/5/2/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. Andrei Bernevig & Claudia Felser & Haim Beidenkopf, 2022. "Progress and prospects in magnetic topological materials," Nature, Nature, vol. 603(7899), pages 41-51, March.
    2. Alicia J. Kollár & Mattias Fitzpatrick & Andrew A. Houck, 2019. "Hyperbolic lattices in circuit quantum electrodynamics," Nature, Nature, vol. 571(7763), pages 45-50, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Chi & Yunbo Ou & Tim B. Eldred & Wenpei Gao & Sohee Kwon & Joseph Murray & Michael Dreyer & Robert E. Butera & Alexandre C. Foucher & Haile Ambaye & Jong Keum & Alice T. Greenberg & Yuhang Liu & , 2023. "Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. A. Honma & D. Takane & S. Souma & K. Yamauchi & Y. Wang & K. Nakayama & K. Sugawara & M. Kitamura & K. Horiba & H. Kumigashira & K. Tanaka & T. K. Kim & C. Cacho & T. Oguchi & T. Takahashi & Yoichi An, 2023. "Antiferromagnetic topological insulator with selectively gapped Dirac cones," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Erjian Cheng & Limin Yan & Xianbiao Shi & Rui Lou & Alexander Fedorov & Mahdi Behnami & Jian Yuan & Pengtao Yang & Bosen Wang & Jin-Guang Cheng & Yuanji Xu & Yang Xu & Wei Xia & Nikolai Pavlovskii & D, 2024. "Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Junyeong Ahn & Su-Yang Xu & Ashvin Vishwanath, 2022. "Theory of optical axion electrodynamics and application to the Kerr effect in topological antiferromagnets," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Qiaolu Chen & Zhe Zhang & Haoye Qin & Aleksi Bossart & Yihao Yang & Hongsheng Chen & Romain Fleury, 2024. "Anomalous and Chern topological waves in hyperbolic networks," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Han Wu & Lei Chen & Paul Malinowski & Bo Gyu Jang & Qinwen Deng & Kirsty Scott & Jianwei Huang & Jacob P. C. Ruff & Yu He & Xiang Chen & Chaowei Hu & Ziqin Yue & Ji Seop Oh & Xiaokun Teng & Yucheng Gu, 2024. "Reversible non-volatile electronic switching in a near-room-temperature van der Waals ferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Patrick M. Lenggenhager & Alexander Stegmaier & Lavi K. Upreti & Tobias Hofmann & Tobias Helbig & Achim Vollhardt & Martin Greiter & Ching Hua Lee & Stefan Imhof & Hauke Brand & Tobias Kießling & Igor, 2022. "Simulating hyperbolic space on a circuit board," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Weixuan Zhang & Hao Yuan & Na Sun & Houjun Sun & Xiangdong Zhang, 2022. "Observation of novel topological states in hyperbolic lattices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:5:y:2022:i:2:p:17-254:d:797919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.