IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v3y2020i2p13-161d349792.html
   My bibliography  Save this article

Hox Gene Collinearity May Be Related to Noether Theory on Symmetry and Its Linked Conserved Quantity

Author

Listed:
  • Spyros Papageorgiou

    (Insitute of Biosciences and Applications, National Center for Scientific Research ‘Demokritos’, 15310 Athens, Greece)

Abstract

Hox Gene Collinearity (HGC) is a fundamental property that controls the development of many animal species, including vertebrates. In the Hox gene clusters, the genes are located in a sequential order Hox1, Hox2, Hox3, etc., along the 3’ to 5’ direction of the cluster in the chromosome. During Hox cluster activation, the Hox genes are expressed sequentially in the ontogenetic units D1, D2, D3, etc., along the anterior–posterior axis (A-P) of the early embryo. This collinearity, first observed by E.B. Lewis, is surprising because the spatial collinearity of these structures (Hox clusters and embryos) correlates entities that differ by about four orders of magnitude. Biomolecular mechanisms alone cannot explain such correlations. Long-range physical interactions, such as diffusion or electric attractions, should be involved. A biophysical model (BM) was formulated, which, in alignment with the biomolecular processes, successfully describes the existing vertebrate genetic engineering data. One hundred years ago, Emmy Noether made a fundamental discovery in mathematics and physics. She proved, rigorously, that a physical system obeying a symmetry law (e.g., rotations or self-similarity) is followed by a conserved physical quantity. It is argued here that HGC obeys a ‘primitive’ self-similarity symmetry. In this case, the associated primitive conserved quantity is the irreversibly increasing ‘ratchet’-like Hoxgene ordering where some genes may be missing. The genes of a vertebrate Hox clusterare located along a finite straight line. The same order follows the ontogenetic unitsof the vertebrate embryo. Therefore, HGC is a manifestation of a primitive Noether Theory (NT). NT may be applied to other than the vertebrate case, for instance, to animals with a circular topological symmetry. For example, the observed abnormal Hox gene ordering of the echinoderm Hox clusters may be reproduced by a double-strand break of the circular Hox gene ordering and its subsequent incorporation in the flanking chromosome.

Suggested Citation

  • Spyros Papageorgiou, 2020. "Hox Gene Collinearity May Be Related to Noether Theory on Symmetry and Its Linked Conserved Quantity," J, MDPI, vol. 3(2), pages 1-11, April.
  • Handle: RePEc:gam:jjopen:v:3:y:2020:i:2:p:13-161:d:349792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/3/2/13/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/3/2/13/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:3:y:2020:i:2:p:13-161:d:349792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.