IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v2y2005i1p74-79d2714.html
   My bibliography  Save this article

Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo

Author

Listed:
  • Yu-Ping Wang

    (National Center for Toxicological Research, Jefferson, AR 72079, USA)

  • Peter P. Fu

    (National Center for Toxicological Research, Jefferson, AR 72079, USA)

  • Ming W. Chou

    (National Center for Toxicological Research, Jefferson, AR 72079, USA)

Abstract

Pyrrolizidine alkaloids are naturally occurring genotoxic chemicals produced by a large number of plants. The high toxicity of many pyrrolizidine alkaloids has caused considerable loss of free-ranging livestock due to liver and pulmonary lesions. Chronic exposure of toxic pyrrolizidine alkaloids to laboratory animals induces cancer. This investigation studies the metabolic activation of retrorsine, a representative naturally occurring tumorigenic pyrrolizidine alkaloid, and shows that a genotoxic mechanism is correlated to the tumorigenicity of retrorsine. Metabolism of retrorsine by liver microsomes of F344 female rats produced two metabolites, 6, 7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP), at a rate of 4.8 ± 0.1 nmol/mg/min, and retrorsine-N-oxide, at a rate of 17.6±0.5 nmol/mg/min. Metabolism was enhanced 1.7-fold by using liver microsomes prepared from dexamethasone-treated rats. DHP formation was inhibited 77% and retrorsine N-oxide formation was inhibited 29% by troleandomycin, a P450 3A enzyme inhibitor. Metabolism of retrorsine with lung, kidney, and spleen microsomes from dexamethasone-treated rats also generated DHP and the N-oxide derivative. When rat liver microsomal metabolism of retrorsine occurred in the presence of calf thymus DNA, a set of DHP-derived DNA adducts was formed; these adducts were detected and quantified by using a previously developed 32 P-postlabeling/HPLC method. These same DNA adducts were also found in liver DNA of rats gavaged with retrorsine. Since DHP-derived DNA adducts are suggested to be potential biomarkers of riddelliine-induced tumorigenicity, our results indicate that (i) similar to the metabolic activation of riddelliine, the mechanism of retrorsine-induced carcinogenicity in rats is also through a genotoxic mechanism involving DHP; and (ii) the set of DHP-derived DNA adducts found in liver DNA of rats gavaged with retrorsine or riddelliine can serve as biomarkers for the tumorigenicity induced by retronecine-type pyrrolizidine alkaloids.

Suggested Citation

  • Yu-Ping Wang & Peter P. Fu & Ming W. Chou, 2005. "Metabolic Activation of the Tumorigenic Pyrrolizidine Alkaloid, Retrorsine, Leading to DNA Adduct Formation In Vivo," IJERPH, MDPI, vol. 2(1), pages 1-6, April.
  • Handle: RePEc:gam:jijerp:v:2:y:2005:i:1:p:74-79:d:2714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/2/1/74/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/2/1/74/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:2:y:2005:i:1:p:74-79:d:2714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.