IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i2p1564-d1036305.html
   My bibliography  Save this article

Circulating Peptidome Is Strongly Altered in COVID-19 Patients

Author

Listed:
  • Gianluca Baldanzi

    (Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
    Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
    These authors contributed equally to this work.)

  • Beatrice Purghè

    (Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
    Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
    These authors contributed equally to this work.)

  • Beatrice Ragnoli

    (Respiratory Unit, Sant’Andrea Hospital, 13100 Vercelli, Italy)

  • Pier Paolo Sainaghi

    (Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
    Internal and Emergency Medicine Department, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy)

  • Roberta Rolla

    (Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy)

  • Annalisa Chiocchetti

    (Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy
    Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy)

  • Marcello Manfredi

    (Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
    Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, 28100 Novara, Italy)

  • Mario Malerba

    (Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
    Respiratory Unit, Sant’Andrea Hospital, 13100 Vercelli, Italy)

Abstract

Whilst the impact of coronavirus disease 2019 (COVID-19) on the host proteome, metabolome, and lipidome has been largely investigated in different bio-fluids, to date, the circulating peptidome remains unexplored. Thus, the present study aimed to apply an untargeted peptidomic approach to provide insight into alterations of circulating peptides in the development and severity of SARS-CoV-2 infection. The circulating peptidome from COVID-19 severe and mildly symptomatic patients and negative controls was characterized using LC-MS/MS analysis for identification and quantification purposes. Database search and statistical analysis allowed a complete characterization of the plasma peptidome and the detection of the most significant modulated peptides that were impacted by the infection. Our results highlighted not only that peptide abundance inversely correlates with disease severity, but also the involvement of biomolecules belonging to inflammatory, immune-response, and coagulation proteins/processes. Moreover, our data suggested a possible involvement of changes in protein degradation patterns. In the present research, for the first time, the untargeted peptidomic approach enabled the identification of circulating peptides potentially playing a crucial role in the progression of COVID-19.

Suggested Citation

  • Gianluca Baldanzi & Beatrice Purghè & Beatrice Ragnoli & Pier Paolo Sainaghi & Roberta Rolla & Annalisa Chiocchetti & Marcello Manfredi & Mario Malerba, 2023. "Circulating Peptidome Is Strongly Altered in COVID-19 Patients," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1564-:d:1036305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/2/1564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/2/1564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexey Stukalov & Virginie Girault & Vincent Grass & Ozge Karayel & Valter Bergant & Christian Urban & Darya A. Haas & Yiqi Huang & Lila Oubraham & Anqi Wang & M. Sabri Hamad & Antonio Piras & Fynn M., 2021. "Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV," Nature, Nature, vol. 594(7862), pages 246-252, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Thomas Kruse & Caroline Benz & Dimitriya H. Garvanska & Richard Lindqvist & Filip Mihalic & Fabian Coscia & Raviteja Inturi & Ahmed Sayadi & Leandro Simonetti & Emma Nilsson & Muhammad Ali & Johanna K, 2021. "Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Solène Denolly & Alexey Stukalov & Uladzimir Barayeu & Alina N. Rosinski & Paraskevi Kritsiligkou & Sebastian Joecks & Tobias P. Dick & Andreas Pichlmair & Ralf Bartenschlager, 2023. "Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Haris Babačić & Wanda Christ & José Eduardo Araújo & Georgios Mermelekas & Nidhi Sharma & Janne Tynell & Marina García & Renata Varnaite & Hilmir Asgeirsson & Hedvig Glans & Janne Lehtiö & Sara Gredma, 2023. "Comprehensive proteomics and meta-analysis of COVID-19 host response," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Friederike L. Pennemann & Assel Mussabekova & Christian Urban & Alexey Stukalov & Line Lykke Andersen & Vincent Grass & Teresa Maria Lavacca & Cathleen Holze & Lila Oubraham & Yasmine Benamrouche & En, 2021. "Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    8. Emilie Murigneux & Laurent Softic & Corentin Aubé & Carmen Grandi & Delphine Judith & Johanna Bruce & Morgane Le Gall & François Guillonneau & Alain Schmitt & Vincent Parissi & Clarisse Berlioz-Torren, 2024. "Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Andrea Fossati & Deepto Mozumdar & Claire Kokontis & Melissa Mèndez-Moran & Eliza Nieweglowska & Adrian Pelin & Yuping Li & Baron Guo & Nevan J. Krogan & David A. Agard & Joseph Bondy-Denomy & Daniell, 2023. "Next-generation proteomics for quantitative Jumbophage-bacteria interaction mapping," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Debjit Khan & Fulvia Terenzi & GuanQun Liu & Prabar K. Ghosh & Fengchun Ye & Kien Nguyen & Arnab China & Iyappan Ramachandiran & Shruti Chakraborty & Jennifer Stefan & Krishnendu Khan & Kommireddy Vas, 2023. "A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    11. Filip Mihalič & Caroline Benz & Eszter Kassa & Richard Lindqvist & Leandro Simonetti & Raviteja Inturi & Hanna Aronsson & Eva Andersson & Celestine N. Chi & Norman E. Davey & Anna K. Överby & Per Jemt, 2023. "Identification of motif-based interactions between SARS-CoV-2 protein domains and human peptide ligands pinpoint antiviral targets," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1564-:d:1036305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.