IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i21p7000-d1271261.html
   My bibliography  Save this article

Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia

Author

Listed:
  • Fasil Wagnew

    (National Centre for Epidemiology and Population Health (NCEPH), College of Health and Medicine, The Australian National University, Canberra 2601, Australia
    College of Health Sciences, Debre Markos University, Debre Markos P.O. Box 269, Ethiopia
    Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands 6009, Australia)

  • Kefyalew Addis Alene

    (Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands 6009, Australia
    School of Population Health, Faculty of Health Sciences, Curtin University, Bentley 6102, Australia)

  • Matthew Kelly

    (National Centre for Epidemiology and Population Health (NCEPH), College of Health and Medicine, The Australian National University, Canberra 2601, Australia)

  • Darren Gray

    (Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia)

Abstract

Undernutrition is a key driver of the global tuberculosis (TB) epidemic, yet there is limited understanding regarding the spatial overlap of both diseases. This study aimed to determine the geographical co-distribution and socio-climatic factors of undernutrition and TB in Ethiopia. Data on undernutrition were found from the Ethiopian Demographic and Health Survey (EDHS). Data on TB were obtained from the Ethiopia national TB prevalence survey. We applied a geostatistical model using a Bayesian framework to predict the prevalence of undernutrition and TB. Spatial overlap of undernutrition and TB prevalence was detected in the Afar and Somali regions. Population density was associated with the spatial distribution of TB [β: 0.008; 95% CrI: 0.001, 0.014], wasting [β: −0.017; 95% CrI: −0.032, −0.004], underweight [β: −0.02; 95% CrI: −0.031, −0.011], stunting [β: −0.012; 95% CrI: −0.017, −0.006], and adult undernutrition [β: −0.007; 95% CrI: −0.01, −0.005]. Distance to a health facility was associated with the spatial distribution of stunting [β: 0.269; 95% CrI: 0.08, 0.46] and adult undernutrition [β: 0.176; 95% CrI: 0.044, 0.308]. Healthcare access and demographic factors were associated with the spatial distribution of TB and undernutrition. Therefore, geographically targeted service integration may be more effective than nationwide service integration.

Suggested Citation

  • Fasil Wagnew & Kefyalew Addis Alene & Matthew Kelly & Darren Gray, 2023. "Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia," IJERPH, MDPI, vol. 20(21), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:21:p:7000-:d:1271261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/21/7000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/21/7000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kedir Y. Ahmed & Allen G. Ross & Seada M. Hussien & Kingsley E. Agho & Bolajoko O. Olusanya & Felix Akpojene Ogbo, 2023. "Mapping Local Variations and the Determinants of Childhood Stunting in Nigeria," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    2. D. J. Weiss & A. Nelson & H. S. Gibson & W. Temperley & S. Peedell & A. Lieber & M. Hancher & E. Poyart & S. Belchior & N. Fullman & B. Mappin & U. Dalrymple & J. Rozier & T. C. D. Lucas & R. E. Howes, 2018. "A global map of travel time to cities to assess inequalities in accessibility in 2015," Nature, Nature, vol. 553(7688), pages 333-336, January.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    5. Wenjun Zhu & Si Zhu & Bruno F. Sunguya & Jiayan Huang, 2021. "Urban–Rural Disparities in the Magnitude and Determinants of Stunting among Children under Five in Tanzania: Based on Tanzania Demographic and Health Surveys 1991–2016," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    6. Hargreaves, J.R. & Boccia, D. & Evans, C.A. & Adato, M. & Petticrew, M. & Porter, J.D., 2011. "The social determinants of tuberculosis: from evidence to action," American Journal of Public Health, American Public Health Association, vol. 101(4), pages 654-662.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    2. Jacqueline D. Seufert & Andre Python & Christoph Weisser & Elías Cisneros & Krisztina Kis‐Katos & Thomas Kneib, 2022. "Mapping ex ante risks of COVID‐19 in Indonesia using a Bayesian geostatistical model on airport network data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2121-2155, October.
    3. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    4. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    5. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.
    6. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    7. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    8. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    9. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    10. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    11. Márcio Poletti Laurini, 2017. "A spatial error model with continuous random effects and an application to growth convergence," Journal of Geographical Systems, Springer, vol. 19(4), pages 371-398, October.
    12. Somnath Chaudhuri & Gerard Giménez-Adsuar & Marc Saez & Maria A. Barceló, 2022. "PandemonCAT: Monitoring the COVID-19 Pandemic in Catalonia, Spain," IJERPH, MDPI, vol. 19(8), pages 1-22, April.
    13. Michela Cameletti & Finn Lindgren & Daniel Simpson & Håvard Rue, 2013. "Spatio-temporal modeling of particulate matter concentration through the SPDE approach," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 109-131, April.
    14. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    15. Daniel Vélez-Serrano & Alejandro Álvaro-Meca & Fernando Sebastián-Huerta & Jose Vélez-Serrano, 2021. "Spatio-Temporal Traffic Flow Prediction in Madrid: An Application of Residual Convolutional Neural Networks," Mathematics, MDPI, vol. 9(9), pages 1-16, May.
    16. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    17. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    18. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    19. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    20. Francesca Della Rocca & Pietro Milanesi, 2022. "The New Dominator of the World: Modeling the Global Distribution of the Japanese Beetle under Land Use and Climate Change Scenarios," Land, MDPI, vol. 11(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:21:p:7000-:d:1271261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.