IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i2p698-d720426.html
   My bibliography  Save this article

Simulation and Optimization Strategy of Storm Flood Safety Pattern Based on SCS-CN Model

Author

Listed:
  • Xinhong Cai

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China)

  • Dawei Xu

    (College of Landscape Architecture, Northeast Forestry University, Harbin 150000, China
    Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150000, China)

Abstract

The contradiction between rapid urbanization’s demand for land resources and the ecological environment is increasing, which has led to large-scale hardening of the underlying surface of the city and reduction of land for storage. In addition, construction land occupies rainwater confluence land, resulting in a significant decline in urban stormwater control capabilities. The increasingly frequent flood disasters in recent years have exposed the contradiction between urban construction and stormwater safety that cannot be ignored. Therefore, this article takes the central city of Harbin as the research object, uses ArcGIS for spatial analysis and SCS (Soil Conservation Service) hydrological model simulation to construct the rain and flood safety pattern in the research area, and proposes targeted optimization suggestions and strategies based on the evaluation results to achieve the purpose of coordinating the water ecosystem service function with social and economic development. The research shows that protecting the original stormwater corridor and strengthening the connection between the stormwater control patches can effectively guarantee the connectivity of the stormwater corridor, build the natural stormwater regulation and storage system, and then increase the ability of the city to resist the risk of rainstorm, reduce the disaster caused by urban waterlogging, and achieve the goal of sponge city construction.

Suggested Citation

  • Xinhong Cai & Dawei Xu, 2022. "Simulation and Optimization Strategy of Storm Flood Safety Pattern Based on SCS-CN Model," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:2:p:698-:d:720426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/2/698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/2/698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Daksiya & H. T. Su & Y. H. Chang & Edmond Y. M. Lo, 2017. "Incorporating socio-economic effects and uncertain rainfall in flood mitigation decision using MCDA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 515-531, May.
    2. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sugianto Sugianto & Anwar Deli & Edy Miswar & Muhammad Rusdi & Muhammad Irham, 2022. "The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya," Land, MDPI, vol. 11(8), pages 1-18, August.
    2. Saad Mazhar Khan & Imran Shafi & Wasi Haider Butt & Isabel de la Torre Díez & Miguel Angel López Flores & Juan Castañedo Galvlán & Imran Ashraf, 2023. "Model Driven Approach for Efficient Flood Disaster Management with Meta Model Support," Land, MDPI, vol. 12(8), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:2:p:698-:d:720426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.