IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9221-d874049.html
   My bibliography  Save this article

Highly Efficient Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol over Mesoporous Zr-Containing Hybrids with 5-Sulfosalicylic Acid as a Ligand

Author

Listed:
  • Jirui Yang

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31, Fukang Road, Nankai District, Tianjin 300191, China)

  • Haixin Guo

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31, Fukang Road, Nankai District, Tianjin 300191, China)

  • Feng Shen

    (Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31, Fukang Road, Nankai District, Tianjin 300191, China)

Abstract

The catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol under mild conditions is an attractive topic in biorefinery. Herein, mesoporous Zr-containing hybrids (Zr-hybrids) with a high surface area (281.9–291.3 m 2 /g) and large pore volume (0.49–0.74 cm 3 /g) were prepared using the biomass-derived 5-sulfosalicylic acid as a ligand, and they were proven to be highly efficient for the Meerwein–Ponndorf–Verley reduction of furfural to furfuryl alcohol at 110 °C, with the highest furfuryl alcohol yield reaching up to 97.8%. Characterizations demonstrated that sulfonic and carboxyl groups in 5-sulfosalicylic acid molecules were coordinated with zirconium ions, making zirconium ions fully dispersed, thus leading to the formation of very fine zirconia particles with the diameter of <2 nm in mesoporous Zr-hybrids. The interaction between the 5-sulfosalicylic acid ligands and zirconium ions endowed mesoporous Zr-hybrids with relatively higher acid strength but lower base strength, which was beneficial for the selective reduction of furfural to furfuryl alcohol. A recycling study was performed over a certain mesoporous Zr-hybrid, namely meso-Zr-SA15, demonstrating that the yield and selectivity of furfuryl alcohol remained almost unchanged during the five consecutive reaction cycles. This study provides an optional method to prepare hybrid catalysts for biomass refining by using biomass-derived feedstock.

Suggested Citation

  • Jirui Yang & Haixin Guo & Feng Shen, 2022. "Highly Efficient Transfer Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol over Mesoporous Zr-Containing Hybrids with 5-Sulfosalicylic Acid as a Ligand," IJERPH, MDPI, vol. 19(15), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9221-:d:874049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9221/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9221-:d:874049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.