IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i14p2474-d247554.html
   My bibliography  Save this article

Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health

Author

Listed:
  • Agata Borowik

    (Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland)

  • Jadwiga Wyszkowska

    (Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland)

  • Mirosław Kucharski

    (Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland)

  • Jan Kucharski

    (Department of Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland)

Abstract

Grass Elymus elongatus has a potential in phytoremediation and was used in this study in a potted experiment, which was performed to determine the effect of polluting soil (Eutric Cambisol) with diesel oil (DO) and unleaded petroleum (P) on the diversity of soil microorganisms, activity of soil enzymes, physicochemical properties of soil, and on the resistance of Elymus elongatus to DO and P, which altogether allowed evaluating soil health. Both petroleum products were administered in doses of 0 and 7 cm 3 kg −1 soil d.m. Vegetation of Elymus elongatus spanned for 105 days. Grasses were harvested three times, i.e., on day 45, 75, and 105 of the experiment. The study results demonstrated a stronger toxic effect of DO than of P on the growth and development of Elymus elongatus . Diesel oil caused greater changes in soil microbiome compared to unleaded petroleum. This hypothesis was additionally confirmed by Shannon and Simpson indices computed based on operational taxonomic unit (OTU) abundance, whose values were the lowest in the DO-polluted soil. Soil pollution with DO reduced the counts of all bacterial taxa and stimulated the activity of soil enzymes, whereas soil pollution with P diminished the diversity of bacteria only at the phylum, class, order, and family levels, but significantly suppressed the enzymatic activity. More polycyclic aromatic hydrocarbons (PAHs) were degraded in the soil polluted with P compared to DO, which may be attributed to the stimulating effect of Elymus elongatus on this process, as it grew better in the soil polluted with P than in that polluted with DO.

Suggested Citation

  • Agata Borowik & Jadwiga Wyszkowska & Mirosław Kucharski & Jan Kucharski, 2019. "Implications of Soil Pollution with Diesel Oil and BP Petroleum with ACTIVE Technology for Soil Health," IJERPH, MDPI, vol. 16(14), pages 1-21, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2474-:d:247554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/14/2474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/14/2474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Shen & Yu Ji & Chunrong Li & Pingping Luo & Wenke Wang & Yuan Zhang & Daniel Nover, 2018. "Effects of Phytoremediation Treatment on Bacterial Community Structure and Diversity in Different Petroleum-Contaminated Soils," IJERPH, MDPI, vol. 15(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephan J. Hauser & Penglin Zhu, 2022. "The Shaping of Daqing: Borderless Interactions between Oil and Urban Areas," Land, MDPI, vol. 11(7), pages 1-17, July.
    2. Jadwiga Wyszkowska & Edyta Boros-Lajszner & Agata Borowik & Jan Kucharski, 2022. "The Role of Cellulose in Microbial Diversity Changes in the Soil Contaminated with Cadmium," Sustainability, MDPI, vol. 14(21), pages 1-28, October.
    3. Jadwiga Wyszkowska & Agata Borowik & Jan Kucharski, 2022. "The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community," IJERPH, MDPI, vol. 19(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linhe Sun & Huijun Zhao & Jixiang Liu & Bei Li & Yajun Chang & Dongrui Yao, 2021. "A New Green Model for the Bioremediation and Resource Utilization of Livestock Wastewater," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    2. Li Zhang & Zhimin Xu & Yajun Sun & Yating Gao & Lulu Zhu, 2022. "Coal Mining Activities Driving the Changes in Microbial Community and Hydrochemical Characteristics of Underground Mine Water," IJERPH, MDPI, vol. 19(20), pages 1-22, October.
    3. Yun-Yeong Lee & Soo Yeon Lee & Sang Don Lee & Kyung-Suk Cho, 2022. "Seasonal Dynamics of Bacterial Community Structure in Diesel Oil-Contaminated Soil Cultivated with Tall Fescue ( Festuca arundinacea )," IJERPH, MDPI, vol. 19(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2474-:d:247554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.