IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i1p67-d125481.html
   My bibliography  Save this article

Risk Assessment for Children Exposed to Arsenic on Baseball Fields with Contaminated Fill Material

Author

Listed:
  • Alesia C. Ferguson

    (Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA)

  • Jennifer C. Black

    (Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA)

  • Isaac B. Sims

    (Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA)

  • Jennifer N. Welday

    (Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA)

  • Samir M. Elmir

    (Florida Department of Health at Miami-Dade County, Miami, FL 33056, USA)

  • Kendra F. Goff

    (Florida Department of Health, Tallahassee, FL 32399, USA)

  • J. Mark Higginbotham

    (Florida Department of Health, Tallahassee, FL 32399, USA)

  • Helena M. Solo-Gabriele

    (Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA)

Abstract

Children can be exposed to arsenic through play areas which may have contaminated fill material from historic land use. The objective of the current study was to evaluate the risk to children who play and/or spend time at baseball fields with soils shown to have arsenic above background levels. Arsenic in soils at the study sites located in Miami, FL, USA showed distinct distributions between infield, outfield, and areas adjacent to the fields. Using best estimates of exposure factors for children baseball scenarios, results show that non-cancer risks depend most heavily upon the age of the person and the arsenic exposure level. For extreme exposure scenarios evaluated in this study, children from 1 to 2 years were at highest risk for non-cancer effects (Hazard Quotient, HQ > 2.4), and risks were higher for children exhibiting pica (HQ > 9.7) which shows the importance of testing fill for land use where children may play. At the study sites, concentration levels of arsenic resulted in a range of computed cancer risks that differed by a factor of 10. In these sites, the child’s play position also affected risk. Outfield players, with a lifetime exposure to these arsenic levels, could have 10 times more increased chance of experiencing cancers associated with arsenic (i.e., lung, bladder, skin) in comparison to infielders. The distinct concentration distributions observed between these portions of the baseball fields emphasize the need to delineate contaminated areas in public property where citizens may spend more free time. This study also showed a need for more tools to improve the risk estimates for child play activities. For instance, more refined measurements of exposure factors for intake (e.g., inhalation rates under rigorous play activities, hand to mouth rates), exposure frequency (i.e., time spent in various activities) and other exposure factors (e.g., soil particulate emission rates at baseball play fields) can help pinpoint risk on baseball fields where arsenic levels may be a concern.

Suggested Citation

  • Alesia C. Ferguson & Jennifer C. Black & Isaac B. Sims & Jennifer N. Welday & Samir M. Elmir & Kendra F. Goff & J. Mark Higginbotham & Helena M. Solo-Gabriele, 2018. "Risk Assessment for Children Exposed to Arsenic on Baseball Fields with Contaminated Fill Material," IJERPH, MDPI, vol. 15(1), pages 1-23, January.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:67-:d:125481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomoyuki Shibata & Can Meng & Josephine Umoren & Heidi West, 2016. "Risk Assessment of Arsenic in Rice Cereal and Other Dietary Sources for Infants and Toddlers in the U.S," IJERPH, MDPI, vol. 13(4), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristine Couto de Almeida & Diego dos Santos Baião & Paloma de Almeida Rodrigues & Tatiana Dillenburg Saint’Pierre & Rachel Ann Hauser-Davis & Katia Christina Leandro & Vania Margaret Flosi Paschoalin, 2022. "Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk," IJERPH, MDPI, vol. 19(18), pages 1-14, September.
    2. Michele C. Toledo & Janice S. Lee & Bruno L. Batista & Kelly P. K. Olympio & Adelaide C. Nardocci, 2022. "Exposure to Inorganic Arsenic in Rice in Brazil: A Human Health Risk Assessment," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    3. Noelle Liao & Edmund Seto & Brenda Eskenazi & May Wang & Yan Li & Jenna Hua, 2018. "A Comprehensive Review of Arsenic Exposure and Risk from Rice and a Risk Assessment among a Cohort of Adolescents in Kunming, China," IJERPH, MDPI, vol. 15(10), pages 1-17, October.
    4. Michele C. Toledo & Janice S. Lee & Bruno Lemos Batista & Kelly P. K. Olympio & Adelaide C. Nardocci, 2024. "Essential and Toxic Elements in Infant Cereal in Brazil: Exposure Risk Assessment," IJERPH, MDPI, vol. 21(4), pages 1-17, March.
    5. Zhuyun Gu & Shamali de Silva & Suzie M. Reichman, 2020. "Arsenic Concentrations and Dietary Exposure in Rice-Based Infant Food in Australia," IJERPH, MDPI, vol. 17(2), pages 1-11, January.
    6. Alesia Ferguson & Helena Solo-Gabriele, 2016. "Children’s Exposure to Environmental Contaminants: An Editorial Reflection of Articles in the IJERPH Special Issue Entitled, “Children’s Exposure to Environmental Contaminants”," IJERPH, MDPI, vol. 13(11), pages 1-10, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:67-:d:125481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.