IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i10p2218-d174777.html
   My bibliography  Save this article

Fabrication of Stabilized Fe–Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors

Author

Listed:
  • Qimeng Ning

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
    School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China)

  • Zhihong Yin

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Yunguo Liu

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Xiaofei Tan

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Guangming Zeng

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Luhua Jiang

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Shaobo Liu

    (School of Architecture and Art, Central South University, Changsha 410082, China
    School of Metallurgy and Environment, Central South University, Changsha 410083, China)

  • Sirong Tian

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Ni Liu

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China)

  • Xiaohua Wang

    (College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
    School of Architecture and Urban Planning, Hunan City University, Yiyang 413000, China)

Abstract

Fe–Mn binary oxide nanoparticles (FMBON) were reported to be high performance as adsorbent for pollutants removal from aqueous solution. However, there are still limitations in practice application due to the FMBON tend to aggregate into the micro millimeter level. In order to avoid the agglomeration of nanoparticles, this work synthesized the stabilized Fe–Mn binary oxide nanoparticles (CMC-FMBON) by using water-soluble carboxymethyl celluloses (CMC) as the stabilizer. The characteristics of CMC-FMBON and FMBON were measured by using Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and Zeta potential. This work systematically investigated the adsorption capacity of CMC-FMBON for 17β-estradiol (E2) and the influences of external environmental factors on E2 removal. The results indicated that CMC-FMBON had much smaller particles, wider dispersion and larger surface area than the FMBON. CMC-FMBON showed better adsorption performance for E2 than FMBON with the maximum adsorption capacity of CMC-FMBON and FMBON were 124.10 and 98.14 mg/g at 298 K, respectively. The experimental data can be well fitted by the model of pseudo-second-order and Langmuir model. The E2 removal by CMC-FMBON was obviously dependent on pH with the maximum adsorption occurring when the pH was acidic. The removal capacity of CMC-FMBON increased when enhancing ionic strength in solution. Background electrolytes promoted slightly E2 adsorption process whereas the presence of humic acid inhibited the E2 removal. π-π interactions, hydrogen bonds, and oxidation might be responsible for E2 removal. This research suggested that the CMC-FMBON has been considered to be a cost-efficient adsorbent for removing E2 from water.

Suggested Citation

  • Qimeng Ning & Zhihong Yin & Yunguo Liu & Xiaofei Tan & Guangming Zeng & Luhua Jiang & Shaobo Liu & Sirong Tian & Ni Liu & Xiaohua Wang, 2018. "Fabrication of Stabilized Fe–Mn Binary Oxide Nanoparticles: Effective Adsorption of 17β-Estradiol and Influencing Factors," IJERPH, MDPI, vol. 15(10), pages 1-17, October.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2218-:d:174777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/10/2218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/10/2218/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian Yu & Lirong Zhang & Bin Liu, 2019. "Adsorption of Malachite Green with Sodium Dodecylbenzene Sulfonate Modified Sepiolite: Characterization, Adsorption Performance and Regeneration," IJERPH, MDPI, vol. 16(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2218-:d:174777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.