IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i10p2115-d172080.html
   My bibliography  Save this article

Nonpoint Pollution Source-Sink Landscape Pattern Change Analysis in a Coastal River Basin in Southeast China

Author

Listed:
  • Xin Zhang

    (State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Qiong Zheng

    (College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China)

  • Lin Zhou

    (College of Remote Sensing Information Engineering, Wuhan University, Wuhan 430079, China)

  • Jiawei Wei

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

Abstract

Analyzing the spatiotemporal characteristics of source-sink landscape pattern change in river basins is crucial for managing and controlling nonpoint source pollution. This study investigated the landscape pattern changes in Jiulong River basin from 1990 to 2015. A random forest classifier combined with texture and spectral information was applied to interpret the multi-temporal Landsat images. Landscape metrics were calculated to quantify the landscape at the patch level. Transition matrixes were derived for analyzing the conversion among different landscape types. It is notable that the largest values of the number of patches and patch density of residential land appeared in 2005, indicating the highest degree of fragmentation over this time period. The percentage of landscape for forestland was always higher than 71%, and the percentage of residential land increased from 7.42% to 14.55% during the last three decades, while unused land decreased from 5.3% to 2.8%. The downward trend of DO and the upward trend of NH 3 -N and TP indicate the deterioration of water quality during 2005–2015. The quantitative monitoring data of water quality indicators in Hua’an and Xiamen sites in Jiulong River basin are shown. The percentage of landscape of cultivated land increased during 2005–2010, which was consistent with the change tendency of NH 3 -N. Transition matrixes showed that the main changes occurred when forestland and unused land were transformed to residential land and cultivated land over the last three decades. Analysis results demonstrated a higher extent of landscape fragmentation and an unsustainable transition among source-sink landscapes.

Suggested Citation

  • Xin Zhang & Qiong Zheng & Lin Zhou & Jiawei Wei, 2018. "Nonpoint Pollution Source-Sink Landscape Pattern Change Analysis in a Coastal River Basin in Southeast China," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2115-:d:172080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/10/2115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/10/2115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xin Zhang & Yuqi Liu & Lin Zhou, 2018. "Correlation Analysis between Landscape Metrics and Water Quality under Multiple Scales," IJERPH, MDPI, vol. 15(8), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Luo & Yungui Li & Qingsong Wu & Zifei Wei & Qingqing Li & Liang Wei & Yi Shen & Rong Wang, 2019. "Characteristics of Internal Ammonium Loading from Long-Term Polluted Sediments by Rural Domestic Wastewater," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    2. Bin Liang & Guilin Han & Man Liu & Kunhua Yang & Xiaoqiang Li & Jinke Liu, 2018. "Distribution, Sources, and Water Quality Assessment of Dissolved Heavy Metals in the Jiulongjiang River Water, Southeast China," IJERPH, MDPI, vol. 15(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuewen Liang & Yue Pan & Cunwu Li & Weixiong Wu & Xusheng Huang, 2023. "Evaluating the Influence of Land Use and Landscape Pattern on the Spatial Pattern of Water Quality in the Pearl River Basin," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    2. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:10:p:2115-:d:172080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.