IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i3p105-d1360431.html
   My bibliography  Save this article

UAV Control Method Combining Reptile Meta-Reinforcement Learning and Generative Adversarial Imitation Learning

Author

Listed:
  • Shui Jiang

    (College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China)

  • Yanning Ge

    (College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China)

  • Xu Yang

    (College of Computer and Control Engineering, Minjiang University, Fuzhou 350108, China)

  • Wencheng Yang

    (School of Mathematics, Physics and Computing, University of Southern Queensland, Darling Heights, QLD 4350, Australia)

  • Hui Cui

    (Department of Software Systems & Cybersecurity, Monash University, Melbourne, VIC 3800, Australia)

Abstract

Reinforcement learning (RL) is pivotal in empowering Unmanned Aerial Vehicles (UAVs) to navigate and make decisions efficiently and intelligently within complex and dynamic surroundings. Despite its significance, RL is hampered by inherent limitations such as low sample efficiency, restricted generalization capabilities, and a heavy reliance on the intricacies of reward function design. These challenges often render single-method RL approaches inadequate, particularly in the context of UAV operations where high costs and safety risks in real-world applications cannot be overlooked. To address these issues, this paper introduces a novel RL framework that synergistically integrates meta-learning and imitation learning. By leveraging the Reptile algorithm from meta-learning and Generative Adversarial Imitation Learning (GAIL), coupled with state normalization techniques for processing state data, this framework significantly enhances the model’s adaptability. It achieves this by identifying and leveraging commonalities across various tasks, allowing for swift adaptation to new challenges without the need for complex reward function designs. To ascertain the efficacy of this integrated approach, we conducted simulation experiments within both two-dimensional environments. The empirical results clearly indicate that our GAIL-enhanced Reptile method surpasses conventional single-method RL algorithms in terms of training efficiency. This evidence underscores the potential of combining meta-learning and imitation learning to surmount the traditional barriers faced by reinforcement learning in UAV trajectory planning and decision-making processes.

Suggested Citation

  • Shui Jiang & Yanning Ge & Xu Yang & Wencheng Yang & Hui Cui, 2024. "UAV Control Method Combining Reptile Meta-Reinforcement Learning and Generative Adversarial Imitation Learning," Future Internet, MDPI, vol. 16(3), pages 1-18, March.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:3:p:105-:d:1360431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/3/105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/3/105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Silver & Julian Schrittwieser & Karen Simonyan & Ioannis Antonoglou & Aja Huang & Arthur Guez & Thomas Hubert & Lucas Baker & Matthew Lai & Adrian Bolton & Yutian Chen & Timothy Lillicrap & Fan , 2017. "Mastering the game of Go without human knowledge," Nature, Nature, vol. 550(7676), pages 354-359, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    2. Yang, Zhengzhi & Zheng, Lei & Perc, Matjaž & Li, Yumeng, 2024. "Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Keller, Alexander & Dahm, Ken, 2019. "Integral equations and machine learning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 2-12.
    5. Canhoto, Ana Isabel & Clear, Fintan, 2020. "Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential," Business Horizons, Elsevier, vol. 63(2), pages 183-193.
    6. Zhaobin Mo & Xuan Di & Rongye Shi, 2023. "Robust Data Sampling in Machine Learning: A Game-Theoretic Framework for Training and Validation Data Selection," Games, MDPI, vol. 14(1), pages 1-13, January.
    7. Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Yifeng Guo & Xingyu Fu & Yuyan Shi & Mingwen Liu, 2018. "Robust Log-Optimal Strategy with Reinforcement Learning," Papers 1805.00205, arXiv.org.
    9. Xueqing Yan & Yongming Li, 2023. "A Novel Discrete Differential Evolution with Varying Variables for the Deficiency Number of Mahjong Hand," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    10. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    11. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
    12. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Lu Wang & Wenqing Ai & Tianhu Deng & Zuo‐Jun M. Shen & Changjing Hong, 2020. "Optimal production ramp‐up in the smartphone manufacturing industry," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 685-704, December.
    14. Karwowski, Jan & Mańdziuk, Jacek, 2019. "A Monte Carlo Tree Search approach to finding efficient patrolling schemes on graphs," European Journal of Operational Research, Elsevier, vol. 277(1), pages 255-268.
    15. Young Joon Park & Yoon Sang Cho & Seoung Bum Kim, 2019. "Multi-agent reinforcement learning with approximate model learning for competitive games," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.
    16. Hai Wang & Shengnan Chen, 2023. "Insights into the Application of Machine Learning in Reservoir Engineering: Current Developments and Future Trends," Energies, MDPI, vol. 16(3), pages 1-11, January.
    17. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Yanning Ge & Tao Huang & Xiaoding Wang & Guolong Zheng & Xu Yang, 2024. "The Application of Residual Connection-Based State Normalization Method in GAIL," Mathematics, MDPI, vol. 12(2), pages 1-14, January.
    19. Iwao Maeda & David deGraw & Michiharu Kitano & Hiroyasu Matsushima & Hiroki Sakaji & Kiyoshi Izumi & Atsuo Kato, 2020. "Deep Reinforcement Learning in Agent Based Financial Market Simulation," JRFM, MDPI, vol. 13(4), pages 1-17, April.
    20. Peter Eastman & Jade Shi & Bharath Ramsundar & Vijay S Pande, 2018. "Solving the RNA design problem with reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:3:p:105-:d:1360431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.