IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i12p381-d1288971.html
   My bibliography  Save this article

The Multiband over Spatial Division Multiplexing Sliceable Transceiver for Future Optical Networks

Author

Listed:
  • Laia Nadal

    (Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Parc Mediterrani de la Tecnologia—Building B4, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain)

  • Mumtaz Ali

    (Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Parc Mediterrani de la Tecnologia—Building B4, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain)

  • Francisco Javier Vílchez

    (Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Parc Mediterrani de la Tecnologia—Building B4, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain)

  • Josep Maria Fàbrega

    (Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Parc Mediterrani de la Tecnologia—Building B4, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain)

  • Michela Svaluto Moreolo

    (Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Parc Mediterrani de la Tecnologia—Building B4, Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain)

Abstract

In the last 15 years, global data traffic has been doubling approximately every 2–3 years, and there is a strong indication that this pattern will persist. Hence, also driven by the emergence of new applications and services expected within the 6G era, new transmission systems and technologies should be investigated to enhance network capacity and achieve increased bandwidth, improved spectral efficiency, and greater flexibility to effectively accommodate all the expected data traffic. In this paper, an innovative transmission solution based on multiband (MB) over spatial division multiplexing (SDM) sliceable bandwidth/bitrate variable transceiver (S-BVT) is implemented and assessed in relation to the provision of sustainable capacity scaling. MB transmission (S+C+L) over 25.4 km of 19-cores multicore fibre (MCF) is experimentally assessed and demonstrated achieving an aggregated capacity of 119.1 Gb/s at 4.62 × 10 − 3 bit error rate (BER). The proposed modular sliceable transceiver architecture arises as a suitable option towards achieving 500 Tb/s per fibre transmission, by further enabling more slices covering all the available S+C+L spectra and the 19 cores of the MCF.

Suggested Citation

  • Laia Nadal & Mumtaz Ali & Francisco Javier Vílchez & Josep Maria Fàbrega & Michela Svaluto Moreolo, 2023. "The Multiband over Spatial Division Multiplexing Sliceable Transceiver for Future Optical Networks," Future Internet, MDPI, vol. 15(12), pages 1-19, November.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:12:p:381-:d:1288971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/12/381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/12/381/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:12:p:381-:d:1288971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.