IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p480-d72580.html
   My bibliography  Save this article

State of Charge-Based Active Power Sharing Method in a Standalone Microgrid with High Penetration Level of Renewable Energy Sources

Author

Listed:
  • Yun-Su Kim

    (Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Chul-Sang Hwang

    (Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Eung-Sang Kim

    (Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Changhee Cho

    (Korea Electrotechnology Research Institute, Changwon 51543, Korea)

Abstract

Standalone microgrids, which are mainly constructed on island areas have low system inertia, may result large frequency deviations even for small load change. Moreover, increasing penetration level of renewable energy sources (RESs) into standalone microgrids makes the frequency stability problem even worse. To overcome this problem, this paper proposes an active power sharing method with zero frequency deviations. To this end, a battery energy storage system (BESS) is operated as constant frequency (CF) control mode, whereas the other distributed generations (DGs) are operated as an active and reactive power (PQ) control mode. As a result, a state of charge (SOC) of the BESS is changed as the system load varies. Based on the SOC deviation, DGs share the load change. The SOC data is assumed to be sent via communication system, hence the communication time delay is considered. To enhance reliability, controllers of DGs are designed to take account of the failure of communication system. The simulation results show that active power can be shared among DGs according to desired ratio without frequency deviations even for large variation of output power of RESs.

Suggested Citation

  • Yun-Su Kim & Chul-Sang Hwang & Eung-Sang Kim & Changhee Cho, 2016. "State of Charge-Based Active Power Sharing Method in a Standalone Microgrid with High Penetration Level of Renewable Energy Sources," Energies, MDPI, vol. 9(7), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:480-:d:72580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/480/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Jie Wu & Ying Fan & Yan Xia, 2017. "How Can China Achieve Its Nationally Determined Contribution Targets Combining Emissions Trading Scheme and Renewable Energy Policies?," Energies, MDPI, vol. 10(8), pages 1-20, August.
    3. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.
    4. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2021. "Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-45, November.
    5. Shin-Yeu Lin & Ai-Chih Lin, 2016. "Risk-Limiting Scheduling of Optimal Non-Renewable Power Generation for Systems with Uncertain Power Generation and Load Demand," Energies, MDPI, vol. 9(11), pages 1-16, October.
    6. P. Sathishkumar & T. N. V. Krishna & Himanshu & Muhammad Adil Khan & Kamran Zeb & Hee-Je Kim, 2018. "Digital Soft Start Implementation for Minimizing Start Up Transients in High Power DAB-IBDC Converter," Energies, MDPI, vol. 11(4), pages 1-18, April.
    7. Jae-Won Chang & Gyu-Sub Lee & Hyeon-Jin Moon & Mark B. Glick & Seung-Il Moon, 2019. "Coordinated Frequency and State-of-Charge Control with Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid," Energies, MDPI, vol. 12(9), pages 1-16, April.
    8. Morris Brenna & Federica Foiadelli & Michela Longo & Dario Zaninelli, 2017. "Improvement of Wind Energy Production through HVDC Systems," Energies, MDPI, vol. 10(2), pages 1-25, January.
    9. Pavel Ilyushin & Sergey Filippov & Aleksandr Kulikov & Konstantin Suslov & Dmitriy Karamov, 2022. "Intelligent Control of the Energy Storage System for Reliable Operation of Gas-Fired Reciprocating Engine Plants in Systems of Power Supply to Industrial Facilities," Energies, MDPI, vol. 15(17), pages 1-21, August.
    10. Nahid-Al Masood & Md. Nahid Haque Shazon & Hasin Mussayab Ahmed & Shohana Rahman Deeba, 2020. "Mitigation of Over-Frequency through Optimal Allocation of BESS in a Low-Inertia Power System," Energies, MDPI, vol. 13(17), pages 1-23, September.
    11. Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2017. "Analyzing the Impacts of System Parameters on MPC-Based Frequency Control for a Stand-Alone Microgrid," Energies, MDPI, vol. 10(4), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:480-:d:72580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.