IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v2y2009i1p97-119d4214.html
   My bibliography  Save this article

Experimental Study on Forced Convective Heat Transfer with Low Volume Fraction of CuO/Water Nanofluid

Author

Listed:
  • Lazarus Godson Asirvatham

    (Department of Mechanical Engineering, Anna University, Chennai, India)

  • Nandigana Vishal

    (Department of Mechanical Engineering, Anna University, Chennai, India)

  • Senthil Kumar Gangatharan

    (Department of Mechanical Engineering, Anna University, Chennai, India)

  • Dhasan Mohan Lal

    (Department of Mechanical Engineering, Anna University, Chennai, India)

Abstract

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a low volume fraction (0.003% by volume) of copper oxide (CuO) nanoparticles dispersed to form a nanofluid that flows through a copper tube. The effect of mass flow rate ranging from (0.0113 kg/s to 0.0139 kg/s) and the effect of inlet temperatures at 10 0 C and 17 0 C on the heat transfer coefficient are studied on the entry region under laminar flow condition. The results have shown 8% enhancement of the convective heat transfer coefficient of the nanofluid even with a low volume concentration of CuO nanoparticles. The heat transfer enhancement was increased considerably as the Reynolds number increased. Possible reasons for the enhancement are discussed. Nanofluid thermo-physical properties and chaotic movement of ultrafine particles which accelerate the energy exchange process are proposed to be the main reasons for the observed heat transfer enhancement. A correlation for convective heat transfer coefficient of nanofluids, based on transport property and D/x for 8 mm tube has been evolved. The correlation predicts variation in the local Nusselt number along the flow direction of the nanofluid. A good agreement (±10%) is seen between the experimental and predicted results.

Suggested Citation

  • Lazarus Godson Asirvatham & Nandigana Vishal & Senthil Kumar Gangatharan & Dhasan Mohan Lal, 2009. "Experimental Study on Forced Convective Heat Transfer with Low Volume Fraction of CuO/Water Nanofluid," Energies, MDPI, vol. 2(1), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:2:y:2009:i:1:p:97-119:d:4214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/2/1/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/2/1/97/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joo Hee Lee & Seong Geon Hwang & Gwi Hyun Lee, 2019. "Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids," Energies, MDPI, vol. 12(16), pages 1-16, August.
    2. Yubai Li & Hongbin Yan & Mehrdad Massoudi & Wei-Tao Wu, 2017. "Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    4. Najiha, M.S. & Rahman, M.M. & Yusoff, A.R., 2016. "Environmental impacts and hazards associated with metal working fluids and recent advances in the sustainable systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1008-1031.
    5. Mikhail A. Sheremet & Hakan F. Oztop & Dmitriy V. Gvozdyakov & Mohamed E. Ali, 2018. "Impacts of Heat-Conducting Solid Wall and Heat-Generating Element on Free Convection of Al 2 O 3 /H 2 O Nanofluid in a Cavity with Open Border," Energies, MDPI, vol. 11(12), pages 1-17, December.
    6. Wei-Tao Wu & Mehrdad Massoudi & Hongbin Yan, 2017. "Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study," Energies, MDPI, vol. 10(4), pages 1-18, April.
    7. Gianpiero Colangelo & Noemi Francesca Diamante & Marco Milanese & Giuseppe Starace & Arturo de Risi, 2021. "A Critical Review of Experimental Investigations about Convective Heat Transfer Characteristics of Nanofluids under Turbulent and Laminar Regimes with a Focus on the Experimental Setup," Energies, MDPI, vol. 14(18), pages 1-56, September.
    8. Janusz T. Cieśliński & Przemysław Kozak, 2023. "Experimental Investigations of Forced Convection of Nanofluids in Smooth, Horizontal, Round Tubes: A Review," Energies, MDPI, vol. 16(11), pages 1-49, May.
    9. Azharul Karim & M. Masum Billah & M. T. Talukder Newton & M. Mustafizur Rahman, 2017. "Influence of the Periodicity of Sinusoidal Boundary Condition on the Unsteady Mixed Convection within a Square Enclosure Using an Ag–Water Nanofluid," Energies, MDPI, vol. 10(12), pages 1-21, December.
    10. Piotr Bogusław Jasiński & Michał Jan Kowalczyk & Artur Romaniak & Bartosz Warwas & Damian Obidowski & Artur Gutkowski, 2021. "Investigation of Thermal-Flow Characteristics of Pipes with Helical Micro-Fins of Variable Height," Energies, MDPI, vol. 14(8), pages 1-18, April.
    11. Stanislav Solnař & Stefan Haase & Tomáš Jirout, 2023. "Application of the Temperature Oscillation Method to Laminar Flow in Straight Horizontal and Curved Minichannels," Energies, MDPI, vol. 16(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:2:y:2009:i:1:p:97-119:d:4214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.