IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1252-d1351959.html
   My bibliography  Save this article

Evaluating the Efficiency of Surface-Based Air Heating Systems

Author

Listed:
  • Slawomir Rabczak

    (Faculty of Civil and Environmental and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Krzysztof Nowak

    (Faculty of Civil and Environmental and Architecture, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

Abstract

This study explores the synergistic potential of integrating forced air heating with flat surface heating, presenting a promising solution for structures with intermittent occupancy or where conventional water-based heating proves impractical. The objective is to enhance thermal comfort and reduce long-term energy consumption. A comprehensive examination of the interaction between heated surfaces and forced air heating reveals that excess energy generated can be redirected for more efficient heat distribution. Various scenarios were tested, indicating that the power necessary for maintaining consistent surface temperature could be significantly reduced. A noteworthy approach involves utilizing heat from pellet smoke to maximize heat recovery efficiency from pellet combustion. This, however, raises issues related to smoke introduction into heated spaces. Despite challenges, this approach provides a means to minimize the delivery of overheated air and accumulate energy within room partitions, thereby enhancing system efficiency. The study concludes that while the stand-alone flat surface heating system is better suited as a supplementary heating source within buildings, it offers a compelling alternative within traditional construction, aligning with historical systems.

Suggested Citation

  • Slawomir Rabczak & Krzysztof Nowak, 2024. "Evaluating the Efficiency of Surface-Based Air Heating Systems," Energies, MDPI, vol. 17(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1252-:d:1351959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenqing Liu, 2022. "The Evolution of Cold Adaptation Technology within Ancient Buildings in Amur River Basin Viewed from Archaeology," IJERPH, MDPI, vol. 19(21), pages 1-12, November.
    2. Jinfei Sun & Zhengen Ren & Jianxiang Guo, 2023. "Mechanical Ventilation Heat Recovery Modelling for AccuRate Home—A Benchmark Tool for Whole House Energy Rating in Australia," Energies, MDPI, vol. 16(19), pages 1-22, September.
    3. Elena V. Korkina & Ekaterina V. Gorbarenko & Elena V. Voitovich & Matvey D. Tyulenev & Natalia I. Kozhukhova, 2023. "Temperature Evaluation of a Building Facade with a Thin Plaster Layer under Various Degrees of Cloudiness," Energies, MDPI, vol. 16(15), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1252-:d:1351959. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.