IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p872-d1338296.html
   My bibliography  Save this article

Effect of Nickel Nanocatalyst Loading on Supercritical Water Gasification of Coconut Shell

Author

Listed:
  • Marcela M. Marcelino

    (Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil)

  • Gary A. Leeke

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Guozhan Jiang

    (School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Jude A. Onwudili

    (Energy & Bioproducts Research Institute, School of Infrastructure & Sustainable Engineering, Aston University, Birmingham B4 7ET, UK)

  • Carine T. Alves

    (Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
    Departamento de Engenharia de Energia, Centro de Ciência e Tecnologia em Energia e Sustentabilidade, Universidade Federal do Recôncavo da Bahia (UFRB), Feira de Santana 44085-132, Brazil
    Centro Interdisciplinar em Energia e Ambiente (CIENAM), Campus Universitário Federação/Ondina, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil)

  • Ana Luiza F. de Sousa

    (Departamento de Engenharia Química, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil)

  • Delano M. de Santana

    (Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
    Centro Interdisciplinar em Energia e Ambiente (CIENAM), Campus Universitário Federação/Ondina, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil)

  • Felipe A. Torres

    (Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
    Centro Interdisciplinar em Energia e Ambiente (CIENAM), Campus Universitário Federação/Ondina, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil
    Departamento de Sistemas Mecânicos, Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil)

  • Silvio A. B. Vieira de Melo

    (Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
    Centro Interdisciplinar em Energia e Ambiente (CIENAM), Campus Universitário Federação/Ondina, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil)

  • Ednildo A. Torres

    (Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis, 2, 6° Andar, Federação, Salvador 40210-630, Brazil
    Centro Interdisciplinar em Energia e Ambiente (CIENAM), Campus Universitário Federação/Ondina, Universidade Federal da Bahia (UFBA), Salvador 40170-115, Brazil)

Abstract

Impregnation of metal catalysts into biomass before thermochemical conversion may provide benefits of increased selective reactivity to obtain desirable products. In this work, coconut shells impregnated with increasing loadings of nickel were successfully prepared using a room-temperature impregnation method using a nickel salt solution at 1 and 2 molar (M) concentrations. The physicochemical characterization of the 2 M impregnated sample revealed the presence of 5.6 wt% of nickel with a particle size of 13.5 nm. The nickel-impregnated samples’ supercritical water gasification (SCWG) was conducted with biomass loading ranging from 20 wt% to 30 wt%, at temperatures between 400 °C and 500 °C, and residence times from 20 to 60 min. Higher nickel loading, higher temperatures and longer reaction times promoted the production of H 2 and CO 2 up to 15 and 79 mol%. Higher nickel loading also led to an increased Hydrogen Gasification Efficiency value of up to 133%. The analysis of hydrochars suggested that increasing nickel loading enhanced the reduction in nickel ions to the Ni 0 nanoparticles, leading to higher H 2 . Additionally, the chemical composition of the liquid product showed the significant ability of nickel to promote lignin decomposition into phenol, facilitating the phenol hydrogenation reaction and subsequent gas production.

Suggested Citation

  • Marcela M. Marcelino & Gary A. Leeke & Guozhan Jiang & Jude A. Onwudili & Carine T. Alves & Ana Luiza F. de Sousa & Delano M. de Santana & Felipe A. Torres & Silvio A. B. Vieira de Melo & Ednildo A. T, 2024. "Effect of Nickel Nanocatalyst Loading on Supercritical Water Gasification of Coconut Shell," Energies, MDPI, vol. 17(4), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:872-:d:1338296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcela M. Marcelino & Gary A. Leeke & Guozhan Jiang & Jude A. Onwudili & Carine T. Alves & Delano M. de Santana & Felipe A. Torres & Ednildo A. Torres & Silvio A. B. Vieira de Melo, 2023. "Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst: Box–Behnken Design and Process Evaluation," Energies, MDPI, vol. 16(8), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:872-:d:1338296. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.