IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3894-d1139421.html
   My bibliography  Save this article

Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives

Author

Listed:
  • Salvatore Musumeci

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10129 Torino, Italy)

  • Vincenzo Barba

    (Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, 10129 Torino, Italy)

Abstract

High-electron-mobility transistors based on gallium nitride technology are the most recently developed power electronics devices involved in power electronics applications. This article critically overviews the advantages and drawbacks of these enhanced, wide-bandgap devices compared with the silicon and silicon carbide MOSFETs used in power converters. High-voltage and low-voltage device applications are discussed to indicate the most suitable area of use for these innovative power switches and to provide perspective for the future. A general survey on the applications of gallium nitride technology in DC-DC and DC-AC converters is carried out, considering the improvements and the issues expected for the higher switching transient speed achievable.

Suggested Citation

  • Salvatore Musumeci & Vincenzo Barba, 2023. "Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives," Energies, MDPI, vol. 16(9), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3894-:d:1139421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salvatore Musumeci & Fabio Mandrile & Vincenzo Barba & Marco Palma, 2021. "Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review," Energies, MDPI, vol. 14(19), pages 1-30, October.
    2. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2022. "An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.
    3. Artem Ermolaev & Vladimir Erofeev & Aleksandr Plekhov & Dmitry Titov, 2022. "Magnetic Vibration in Induction Motor Caused by Supply Voltage Distortion," Energies, MDPI, vol. 15(24), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajanand Patnaik Narasipuram & Subbarao Mopidevi, 2023. "A Novel Hybrid Control Strategy and Dynamic Performance Enhancement of a 3.3 kW GaN–HEMT-Based iL 2 C Resonant Full-Bridge DC–DC Power Converter Methodology for Electric Vehicle Charging Systems," Energies, MDPI, vol. 16(15), pages 1-22, August.
    2. Janusz Zarębski & Damian Bisewski, 2023. "The Modeling of GaN-FET Power Devices in SPICE," Energies, MDPI, vol. 16(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinchul Choi & Wootaik Lee, 2022. "Extended Digital Programmable Low-Pass Filter for Direct Noise Filtering of Three-Phase Variables in Low-Cost AC Drives," Energies, MDPI, vol. 15(6), pages 1-13, March.
    2. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2023. "Design of Uninterruptible Power Supply Inverters for Different Modulation Techniques Using Pareto Front for Cost and Efficiency Optimization," Energies, MDPI, vol. 16(3), pages 1-16, January.
    3. Jelena Loncarski & Vito Giuseppe Monopoli & Vitor Monteiro & Leposava Ristic & Milutin Jovanović, 2022. "Efficiency and Performance Optimization of State-of-the-Art “Multi-Phase, -Level, -Cell, -Port, -Motor” Electrical Drives and Renewable Energy Systems," Energies, MDPI, vol. 15(16), pages 1-3, August.
    4. Rupam Singh & Varaha Satya Bharath Kurukuru & Mohammed Ali Khan, 2023. "Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    5. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.
    6. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    7. Sezer Aslan & Metin Ozturk & Nihan Altintas, 2023. "A Comparative Evaluation of Wide-Bandgap Semiconductors for High-Performance Domestic Induction Heating," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3894-:d:1139421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.