IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3065-d1109175.html
   My bibliography  Save this article

Hydrocarbon Generation Mechanism of Mixed Siliciclastic–Carbonate Shale: Implications from Semi–Closed Hydrous Pyrolysis

Author

Listed:
  • Jian Wang

    (Research Institute of Experiment and Testing, PetroChina Xinjiang Oilfield Company, Karamay 834000, China)

  • Jun Jin

    (Research Institute of Experiment and Testing, PetroChina Xinjiang Oilfield Company, Karamay 834000, China)

  • Jin Liu

    (Research Institute of Experiment and Testing, PetroChina Xinjiang Oilfield Company, Karamay 834000, China)

  • Jingqiang Tan

    (Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China)

  • Lichang Chen

    (Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China)

  • Haisu Cui

    (Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China)

  • Xiao Ma

    (Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China)

  • Xueqi Song

    (Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China)

Abstract

Affected by the complex mechanism of organic–inorganic interactions, the generation–retention–expulsion model of mixed siliciclastic–carbonate sediments is more complicated than that of common siliciclastic and carbonate shale deposited in lacustrine and marine environments. In this study, mixed siliciclastic–carbonate shale from Lucaogou Formation in Junggar Basin was selected for semi–closed hydrous pyrolysis experiments, and seven experiments were conducted from room temperature to 300, 325, 350, 375, 400, 450, and 500 °C, respectively. The quantities and chemical composition of oil, gases, and bitumen were comprehensively analyzed. The results show that the hydrocarbon generation stage of shale in Lucaogou Formation can be divided into kerogen cracking stage (300–350 °C), peak oil generation stage (350–400 °C), wet gas generation stage (400–450 °C), and gas secondary cracking stage (450–500 °C). The liquid hydrocarbon yield (oil + bitumen) reached the peak of 720.42 mg/g TOC at 400 °C. The saturate, aromatic, resin, and asphaltine percentages of bitumen were similar to those of crude oil collected from Lucaogou Formation, indicating that semi–closed pyrolysis could stimulate the natural hydrocarbon generation process. Lucaogou shale does not strictly follow the “sequential” reaction model of kerogen, which is described as kerogen firstly generating the intermediate products of heavy hydrocarbon compounds (NSOs) and NSOs then cracking to generate oil and gas. Indeed, the results of this study show that the generation of oil and gas was synchronous with that of NSOs and followed the “alternate pathway” mechanism during the initial pyrolysis stage. The hydrocarbon expulsion efficiency sharply increased from an average of 27% to 97% at 450 °C, meaning that the shale retained considerable amounts of oil below 450 °C. The producible oil reached the peak yield of 515.45 mg/g TOC at 400 °C and was synchronous with liquid hydrocarbons. Therefore, 400 °C is considered the most suitable temperature for fracturing technology.

Suggested Citation

  • Jian Wang & Jun Jin & Jin Liu & Jingqiang Tan & Lichang Chen & Haisu Cui & Xiao Ma & Xueqi Song, 2023. "Hydrocarbon Generation Mechanism of Mixed Siliciclastic–Carbonate Shale: Implications from Semi–Closed Hydrous Pyrolysis," Energies, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3065-:d:1109175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey S. Seewald, 2003. "Organic–inorganic interactions in petroleum-producing sedimentary basins," Nature, Nature, vol. 426(6964), pages 327-333, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiqi Li & Shang Xu & Liang Zhang & Fengling Chen & Shiqiang Wu & Nan Bai, 2022. "Shale Oil Enrichment Mechanism of the Paleogene Xingouzui Formation, Jianghan Basin, China," Energies, MDPI, vol. 15(11), pages 1-18, May.
    2. Qiyang Gou & Shang Xu, 2023. "The Controls of Laminae on Lacustrine Shale Oil Content in China: A Review from Generation, Retention, and Storage," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Rongsheng Zhao & Luquan Ren & Sunhua Deng & Youhong Sun & Zhiyong Chang, 2021. "Constrain on Oil Recovery Stage during Oil Shale Subcritical Water Extraction Process Based on Carbon Isotope Fractionation Character," Energies, MDPI, vol. 14(23), pages 1-12, November.
    4. Zhiwei Zhu & Yuncheng Cao & Zihan Zheng & Duofu Chen, 2022. "An Accurate Model for Estimating H 2 Solubility in Pure Water and Aqueous NaCl Solutions," Energies, MDPI, vol. 15(14), pages 1-15, July.
    5. Yong Chen & Yun Han & Pengfei Zhang & Miao Wang & Yibo Qiu & Xuelei Zhu & Xuejun Zhang, 2023. "Comparison of Evaporite-Related Source Rocks and Implications for Petroleum Exploration: A Case Study of the Dongying Depression, Bohai Bay Basin, Eastern China," Energies, MDPI, vol. 16(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3065-:d:1109175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.