IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7462-d1275226.html
   My bibliography  Save this article

The Effect of Organic Acid Dopants on the Specific Capacitance of Electrodeposited Polypyrrole-Carbon Nanotube/Polyimide Composite Electrodes

Author

Listed:
  • Ruchinda Gooneratne

    (Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

  • Jude O. Iroh

    (Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)

Abstract

Energy storage materials are constantly being improved and developed to cope with the ever-increasing demand of the electronic devices industry. Various synthetic approaches have been used to manufacture electrode materials. This paper is focused on the use of intrinsically conductive polymers such as polypyrrole (PPy) in the development of single-walled carbon nanotube-polyimide, SWCNT-PI, supercapacitor electrode materials. The polypyrrole used in the study is doped with different organic acid dopants of various sizes, including styrene sulfonic acid, SSA, toluene sulfonic acid, TSA, dodecylbenzene sulfonic acid, DBSA, naphthalene disulfonic acid, NDSA, and naphthalene trisulfonic acid, NTSA. The number of sulfonic acid functional group per dopant molecule varied from one to three, while the number of benzene rings in the aromatic unit varied from one to two. It is believed that, as the sulfonic acid to the dopant molecule ratio changes, the morphology and electrochemical properties of the doped PPy-coated electrode material will change accordingly. The change in the morphology of the doped PPy, due to the respective dopant, is correlated with the change in the electrochemical properties of the modified composite electrode. The naphthalene trisulfonic acid (NTSA) dopant was found to produce the highest specific capacitance of about 119 F/g at 5 mV/s. Furthermore, the NTSA-doped PPy electrode system showed the highest porosity and highest tan delta damping peak height for the a-transition. The styrene sulfonic acid-doped PPy/SWCNT-PI electrode material showed an impressive storage modulus of more than 2 GPa, but lower porosity. Styrene polymerization is believed to have occurred. The results obtained indicate that the porosity and electrochemical properties of the electrode materials are correlated.

Suggested Citation

  • Ruchinda Gooneratne & Jude O. Iroh, 2023. "The Effect of Organic Acid Dopants on the Specific Capacitance of Electrodeposited Polypyrrole-Carbon Nanotube/Polyimide Composite Electrodes," Energies, MDPI, vol. 16(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7462-:d:1275226
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7462/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7462-:d:1275226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.