IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6221-d1226358.html
   My bibliography  Save this article

Electrostatic Field for Positive Lightning Impulse Breakdown Voltage in Sphere-to-Plane Air Gaps Using Machine Learning

Author

Listed:
  • Jin-Tae Kim

    (Korea Electric Power Research Institute, Daejeon 34056, Republic of Korea)

  • Yun-Su Kim

    (Graduate School of Energy Convergence, Gwangju Institute of Science Technology, Gwangju 61005, Republic of Korea)

Abstract

Breakdown (BD) voltage is significant in high-voltage power electric machines. Currently, BD voltages are mainly predicted by the semi-empirical formula in strongly inhomogeneous electric fields. However, the equation could not be applied for electrodes with weakly inhomogeneous electric fields. In this paper, positive lightning impulse BD voltages are predicted in various sphere-to-plane air gaps using forms of machine learning such as support vector regression (SVR), Bayesian regression (BR) and multilayer perceptron (MLP). Unlike previous studies, a method is also proposed by introducing streamer propagation characteristics as new features and by removing electric field gradients as unnecessary features to find out how to reduce the feature dimension. The streamer propagation characteristics are suggested to reflect the possibility of a discharge process between electrodes. Predicted voltages from machine learning algorithms are compared with the experimental results and calculated voltages from the semi-empirical formula. Firstly, the predictions from each model agreed well with the datasets. New features were observed to be applied for machine learning algorithms and to be as important as known electrostatic features before discharge. Secondly, predicted BD voltages were more accurate than calculated voltages from the semi-empirical equation in strongly inhomogeneous electric fields. Predictions from each model also agreed well with the experimental results in weakly inhomogeneous electric fields. The prediction accuracy of SVR was better than those of BR and MLP. Machine learning algorithms were also shown to be applied for electrodes with a wide range of inhomogeneities, unlike a semi-empirical method. We expect that the suggested features and machine learning algorithms can be used for accurately calculating BD voltages.

Suggested Citation

  • Jin-Tae Kim & Yun-Su Kim, 2023. "Electrostatic Field for Positive Lightning Impulse Breakdown Voltage in Sphere-to-Plane Air Gaps Using Machine Learning," Energies, MDPI, vol. 16(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6221-:d:1226358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6221/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6221/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6221-:d:1226358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.