IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5973-d1216993.html
   My bibliography  Save this article

Partial Discharge-Originated Deterioration of Insulating Material Investigated by Surface-Resistance and Potential Mapping

Author

Listed:
  • Marek Florkowski

    (Department of Electrical and Power Engineering, Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Maciej Kuniewski

    (Department of Electrical and Power Engineering, Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

The endurance of medium- and high-voltage electrical insulation is a key reliability element in a broad spectrum of applications that cover transmission and distribution levels, the transportation segment, the industrial environment, and power electronics-based energy-conversion systems. The high electric-field stress and high-frequency switching phenomena as well as the impact of environmental conditions lead to the occurrence of partial discharges (PD) and the subsequent deterioration of electrical insulation. Partial discharges usually occur inside solid insulation materials in tiny voids that may either be located adjacent to the electrodes or in the bulk of dielectric material. This effect refers to both AC and DC systems; however, AC voltage is usually much more intensive as compared to DC voltage. This paper describes a novel combined approach based on surface-resistance and potential mapping to reveal the effects of internal processes and the deterioration of insulating material due to the actions of partial discharges. To realize the research objective, the following two-step approach was proposed. Multi-point resistance mapping enables us to identify the spots of discharge channels, manifesting a-few-orders-of-magnitude-lower surface resistance as compared to untreated areas. In addition, surface-potential mapping that was stimulated by corona-charge deposition reflects quasi-equipotential clusters and the related polarity-dependent dynamics of charge decay. A high spatial and temporal resolution allows for the precise mapping and tracing of decay patterns. Experiments were carried out on polyethylene (PE) and Nomex specimens that contained embedded voids. During PD events, the effective discharge areas are identified along with the memory effects that originate from the accumulation of surface charges. Long-term aging processes may drive the formation of channels that are initiated from the deteriorated micro clusters, in turn, penetrating the bulk isolation. The presented methodology and experimental results extend the insight into PD mechanisms and internal surface processes.

Suggested Citation

  • Marek Florkowski & Maciej Kuniewski, 2023. "Partial Discharge-Originated Deterioration of Insulating Material Investigated by Surface-Resistance and Potential Mapping," Energies, MDPI, vol. 16(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5973-:d:1216993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonino Imburgia & Pietro Romano & Giuseppe Rizzo & Fabio Viola & Guido Ala & George Chen, 2020. "Reliability of PEA Measurement in Presence of an Air Void Defect," Energies, MDPI, vol. 13(21), pages 1-14, October.
    2. Michał Kozioł & Łukasz Nagi & Tomasz Boczar & Zbigniew Nadolny, 2023. "Quantitative Analysis of Surface Partial Discharges through Radio Frequency and Ultraviolet Signal Measurements," Energies, MDPI, vol. 16(9), pages 1-15, April.
    3. Giovanni Mazzanti, 2021. "Issues and Challenges for HVDC Extruded Cable Systems," Energies, MDPI, vol. 14(15), pages 1-34, July.
    4. Marek Florkowski, 2020. "Influence of Insulating Material Properties on Partial Discharges at DC Voltage," Energies, MDPI, vol. 13(17), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Florkowski & Maciej Kuniewski, 2023. "Analysis of Space Charge Signal Spatial Resolution Determined with PEA Method in Flat Samples including Attenuation Effects," Energies, MDPI, vol. 16(8), pages 1-16, April.
    2. Hanen Yahyaoui & Jerome Castellon & Serge Agnel & Aurelien Hascoat & Wilfried Frelin & Christophe Moreau & Pierre Hondaa & Dominique le Roux & Virginie Eriksson & Carl Johan Andersson, 2021. "Behavior of XLPE for HVDC Cables under Thermo-Electrical Stress: Experimental Study and Ageing Kinetics Proposal," Energies, MDPI, vol. 14(21), pages 1-15, November.
    3. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    4. Zbigniew Nadolny, 2023. "Design and Optimization of Power Transformer Diagnostics," Energies, MDPI, vol. 16(18), pages 1-7, September.
    5. Paweł Mikrut & Paweł Zydroń, 2023. "Numerical Modeling of PD Pulses Formation in a Gaseous Void Located in XLPE Insulation of a Loaded HVDC Cable," Energies, MDPI, vol. 16(17), pages 1-21, September.
    6. Antonino Imburgia & Giuseppe Rizzo & Pietro Romano & Guido Ala & Roberto Candela, 2022. "Time Evolution of Partial Discharges in a Dielectric Subjected to the DC Periodic Voltage," Energies, MDPI, vol. 15(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5973-:d:1216993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.