IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9504-d1003764.html
   My bibliography  Save this article

Coal Mine Belt Conveyor Foreign Objects Recognition Method of Improved YOLOv5 Algorithm with Defogging and Deblurring

Author

Listed:
  • Qinghua Mao

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, Xi’an 710054, China)

  • Shikun Li

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, Xi’an 710054, China)

  • Xin Hu

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, Xi’an 710054, China)

  • Xusheng Xue

    (School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
    Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, Xi’an 710054, China)

Abstract

The belt conveyor is the main equipment for underground coal transportation. Its coal flow is mixed with large coal, gangue, anchor rods, wooden strips, and other foreign objects, which easily causes failure of the conveyor belt, such as scratching, tearing, and even broken belts. Aiming at the problem that it was difficult to accurately identify the foreign objects of underground belt conveyors due to the influence of fog, high-speed operation, and obscuration, the coal mine belt conveyor foreign object recognition method of improved YOLOv5 algorithm with defogging and deblurring was proposed. In order to improve the clarity of the monitoring video of the belt conveyor, the dark channel priori defogging algorithm is applied to reduce the impact of fog on the clarity of the monitoring video, and the image is sharpened by user-defined convolution method to reduce the blurring effect on the image in high-speed operation condition. In order to improve the precision of foreign object identification, the convolution block attention module is used to improve the feature expression ability of the foreign object in the complex background. Through adaptive spatial feature fusion, the multi-layer feature information of the foreign object image is more fully fused so as to achieve the goal of accurate recognition of foreign objects. In order to verify the recognition effect of the improved YOLOv5 algorithm, a comparative test is conducted with self-built data set and a public data set. The results show that the performance of the improved YOLOv5 algorithm is better than SSD, YOLOv3, and YOLOv5. The belt conveyor monitoring video of resolution for 1920 × 1080 in Huangling Coal Mine is used for identification verification, the recognition accuracy can reach 95.09%, and the recognition frame rate is 56.50 FPS. The improved YOLOv5 algorithm can provide a reference for the accurate recognition of targets in a complex underground environment.

Suggested Citation

  • Qinghua Mao & Shikun Li & Xin Hu & Xusheng Xue, 2022. "Coal Mine Belt Conveyor Foreign Objects Recognition Method of Improved YOLOv5 Algorithm with Defogging and Deblurring," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9504-:d:1003764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9504/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9504-:d:1003764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.